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1.0 LEARNING OBJECTIVE: The learning objective of this Chapter is to study some

properties of groups by studying the properties of the series of its subgroups and factor groups.

1.1 INTRODUCTION: Since groups and their subgroups have some relation, therefore, in

this Chapter we use subgroups of given group to study subnormal and normal series, refinements,
Zassenhaus lemma, Schreier’s refinement theorem, Jordan Holder theorem, composition series,

derived series, commutator subgroups and their properties and three subgroup lemma of P. Hall.
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In Section 1.2, we study subnormal and normal series. It is also shown that every normal series is
a subnormal but converse may not be true. In Section 1.3, we study Zassenhaus Lemma and
Schreier’s refinement theorem. In Section 1.4, we study composition series and see that an
abelian group has composition series if and only if it is finite. We also study Jordan Holder
theorem which say that any two composition series of a finite group are equivalent. At the end of
this chapter we study some more series namely Chief series, derived series and their related

theorems.
1.2 SUBNORMAL AND NORMAL SERIES

1.2.1 Definition (Sub-normal series of a group). A finite sequence
G=G2G120G,D... 2Gr=(e)
of subgroups of G is called subnormal series of G if each G; is a normal subgroup of G;_; for each

i, 1<i<n.

1.2.2 Definition (Normal series of a group). A finite sequence
G=Gy2G12G:2... 2Gn=(e)
of subgroups of G is called normal series of G if G;is a normal subgroup of G foreachi, 1 <i<

n.

Example. Let G ={1, -1, i, -i} where i®=-1, is a group under ordinary multiplication. Consider the
sequence;
{1,-1,i,-i}=Go {1, -1}= G; ={1}=G;

This is normal as well as subnormal series for G.

1.2.3 Theorem. Prove that every normal series of a group G is subnormal but converse may not be
true.
Proof. Let G be a non-empty set and
G=G¢2G12G>... oGh=(e) *)
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be its normal series. Then each G; is normal in G for 1 <i < n. i.e. for every gieG; and for every
geG, we have (g)™* g gieGi. Since G; = Gi.1 = G. Hence for every gieG; and for every gi.1€Gi,
we have (gi.1)™ gi gi.1€G; i.e. Gj is normal in Gi.1. Hence (*) is subnormal series for G also.
For converse part take G = S4, symmetric group of degree 4. Then the sequence
S4= G Ay = G112 V4=Go {(1 2)(3 4), e}= Gz ()= Ga.

where A, is the group of all even permutations, V, ={ I, (1 2)(34), (1 3)(24), (14)(23)}. For
showing that it is subnormal series we use following two results:
(i) We know that if index of a subgroup H of G is 2 then it is always normal in G.
(ii) Take a*Bo, o and B are permutations from S,, then cyclic decomposition of permutations o
1[3(1 and B remains same. For example, cyclic decomposition of ol (12)34)a is always 2x2
form. Similarly cyclic decomposition of ot (123)(46)a is always 3x2. In other words
we cannot find o in Sy such that o™ (1 2)(3 4) a=(1 2 3)(4 6).
Now we prove our result as:
Since index of Gi(= Ag) is 2 in Go( = S4), by (i) G; is normal in Gy. Since G,(=V,) contains all
permutations of the form (a b)(c d) of Sy, therefore, by (ii) G, is normal in G;. By (i) G3(={(1 2)(3
4), e} is normal in G,. Trivially G4(=e) is normal in G3. Hence above series is a subnormal series.

Consider (1234)1 (12)34)(1234)=(1432)(12)((34)(1234) =(14)2 3)zGs.

Hence Gs is not normal in S4. Therefore, the required series is subnormal series but not normal.

1.2.4 Definition (Refinement). Let G=G;2G10G,>... oGn=(e) be a subnormal series of G. Then a
subnormal series G=HyoH;oHo... oDHm=(e) is called refinement of G if every G; is one of the
Hj’s.
Example. Consider two subnormal series of S, as:
SioAs 2 VD (e)
and Si2 A2 Va2 {(12)(34), e} (e).

Then second series is refinement of first series.

1.2.5 Definition. Two subnormal series

G=G¢2G10G2D... oG=(e)
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and G=HooHi1oH.o... oHs=(e) of G are isomorphic if

Gia
i

there exist a one to one correspondence between the set of non-trivial factor groups and

Hi_
the set of non-trivial factor groups |_+1 such that the corresponding factor groups of series are

J

isomorphic.

Example. Take a cyclic group G =<a>of order 6. Then G={e, a, a4, a°, a*, a°}. Take Gi={e, &,
a’} and Hi={e, a°}. Then G=G2G:={e, a° a‘}oG,=(e) and G=HooH:1={e,
a®}oH,=(e) are two subnormal series of G. The set of factor groups is {ﬂ,ﬂ}and {ﬂ,ﬂ .

G G Hy {e}

H Gy _Hp. . : :
~—1 and =1 ~-—0je above two subnormal series of G are isomorphic.

G 1
Then an =~
{8 {e& H

Go
Gy

1.3 ZASSENHAUS LEMMA AND SCHEIER’S REFINEMENT

THEOREM.

1.3.1 Lemma. If H and K are two subgroup of G such that kH=Hk for every k in K. Then HK is a

subgroup of G, H is normal in HK, HNK is normal in K and HK :L

H HNK’
Proof. Since kH=Hk for every k in K, therefore, HK is a subgroup of G. Now let hkeHK, heH
and keK. Then (hk)*hy(hk)= k™ h*hy hk = k™ h, k. Since kH=Hk, therefore, h, k = k h* for some
h*eH. Hence (hk)™hi(hk)=k™ kh*=h* eH . i.e. H is normal subgroup of HK. Further H is
normal in K also since  k'hk=k'kh" e H for all keK and heH. But then H~K is normal
subgroup in K. Therefore, by fundamental theorem of isomorphism

HK _ K

H HNK’
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1.3.2 Zassenhaus Lemma. If B and C are two subgroup of group G and By and Cy are normal

subgroup of B and C respectively. Then

Bo(BF\C) N Co(CﬂB)
Bo(BNCp) ~ Co(CnBp)

Proof. Let K=BNC and H=By(BNCy). Since By is normal in B, therefore, every element of

B commutes with By. Further K < B, therefore, every element of K also commutes with B,.
Also Cyp is normal in C, therefore, BNCy is normal in BNC=K. Hence every element of K also
commutes with BNC,. By above discussion

Hk=By(BNCq)k =Bgk(BNCq) =kBy(BNCp) =kH.

i.e. we have shown that Hk=kH for every k in K. Then by Lemma 1.3.1,

HK K
L (1)
H HNK

Now we will compute HK and HNK.
Since (BNCp) < (BNC), therefore, HK= By(BNCq)(BNC) =Bp(BNC).

Further, let yeHNK then yeH and yeK. Now ye H=By(BNCqy)= y=bob where by
eBo, be (BNCp). Let bob =d for de K=BNC. Then deC. Since (BNCy) c C, therefore, b
also belongs to C.

Now bob=d = by = d b™. Since b,d e C, therefore, d b™=h, also belongs to C. Hence
bg € (Bo NC). Then bgb e (Bo NC)(BNCp) . Hence HNK < (Bg nC)(BNCp).
On the other side,

(BpnC)cK, (BNCy) cK=(BynC)(BNCy) =K.
Since (Bo nC) =By, therefore, (Bopn"C)(BNCp) =By(BgC)=H. Hence
(BonC)(BNCp) =HNK.
On putting the values of H, K, HK and HNK in (1) we get,

Bo(BNC) _ (BNC)
Bo(BNCy) ~ (By NC)(BNCp)

)
On interchanging role of B and C, we get

]
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Co(CnB) _ (CNB)
Co(CBp) ~ (ConB)(CBy)

©)

Since (BpnC) and (BNCy) are normal subgroup of BNC, therefore,
(BognC)(BNCp) =(BNCp)(Byg NC) . Hence right hand side of (2) and (3) are equal and hence

Bo(B(‘\C) - Co(Cf'\B)
Bo(BNCp) ~ Co(CnBg)

Note. This theorem is also known as butterfly theorem.

Theorem. Any two subnormal series of a group have equivalent refinements. This result is
known as Scheier’s theorem.
Proof. Consider the subnormal series
G=Go2G1D...0G={e}, Q)
G=HooHio...oH={e} )
of a group G. Since Gi:1 is normal in G; and (GinH;) is a subgroup of G;, therefore, Gi:+1(GinH;)=
(GinH;)) Gi+1 i.e. Gix1(GinH;) is a subgroup of G. Define,
Gi=Gi«1(GinH;); 0<i <s-1, 0< j< t.
Similarly define,
Hi =Hk+1(HiNGy); 0<k<t-1,0<r<s.
As G; is normal in G;j and Hj:1 is normal in Hj, therefore, (GinHj.+1) is normal in (GinH;). Since
Gi+1 Is normal in Gjs1 , therefore, Gi+1(GinHj+1) is normal in Gi+1(GinH;).
Now by use of (1) and (2) we get, Gi o = Gi+1(GinHp) = Gj+1Gi = Gi and Gj ¢ =
Gis1(GiNHy) = Git1Gs = Gju1.
Hence we have a series
G=Go=Go02Go1 =Gp22... 2Gt=G1= G102 G611 =G122 ... 2G11=G= G202
G21 =G222... 2621=G3= G302 631 =G322 ... 2G3t=G4= G022 ... 2 Gs1 = Gs10 2Gs-

122 ... 2 Gs—l,tst- (3)

]
DDE, GJUS&T, Hisar 8|



ALGEBRA MAL-511

Since each G; for 0< i <s occurs in subnormal series (3), Hence (3) is a refinement of subnormal
series (1).
Similarly, series
H=Ho =Hoo2Ho1 =Ho22 ... 2Hos=Hi=Hio2Hi1 =Hi22... 2 His=H=Hy0 2
Hz1 =Hz22 ... DH2s=H3=H3p o Hs1 =H322 ... o H3s=Hs=Hs02 ... 2 Hta = Hi10 2H:
122 ... 2 Hus=He 4)
is a refinement of subnormal series (2). Clearly both the series in (3) and (4) have st+1 term.
Since each Gi.1 is normal in G; and Hj+s is normal in H;, therefore, by Zassenhaus Lemma
Giu(GinHj) _ HjuGinH) Gij _ Hii

1.e

=~ .. = Thus there is a one-one
Gin(GinHj)  Hju(GizinHj) Giji1 Hjin

correspondence between factor groups of series (3) and (4) such that corresponding factor groups

are isomorphic. Hence the two refinements are isomorphic.
1.4 COMPOSITION SERIES.

1.4.1 Definition (Composition series). A subnormal series
G=Gy2G12G:2... 2G=(e)

of group G is called composition series if for 1< i < r, all the non trivial factor groups 211 are
i

simple. The factor groups of this series are called composition factors.

Example. Let G={1, -1, i, -i}; i>=-1bea group under multiplication, then {1,-1,i, -i}={1,

-1}o{1} is the required composition series of G.

1.4.2 Lemma. Every finite group G has a composition series.
Proof. Let o(G) =n. We will prove the result by induction on n. If n=1. Then the result is trivial.
Suppose that result holds for all groups whose order is less than n. If G is simple, then

G=Go2G;1={e} is the required composition series.
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If G is not simple than G has a maximal normal subgroup H say. Definitely o(H)<n. Then,

Hi_
by induction hypothesis H has a composition series H=Hyo>H;oH,>... oHs=(e) where #is

J

simple factor group. Now consider the series GoH=Ho>H:>... oHs=(e). Since H is maximal

G . . Hig
normal subgroup, therefore, g is simple factor group. Further each H;l is simple factor
j
group; therefore, above series is composition series of G. Hence the result follows.

1.4.3 Lemma. If G is a commutative group having a composition series then G is finite
Proof. First we study the nature of every simple abelian group H. Since H is abelian, therefore,
each subgroup of it is normal. Since G is simple, therefore, it has no proper normal subgroup. But
then G must be a group of prime order. Further we know that every group of prime order is cyclic
also. Hence every simple abelian group H is cyclic group of prime order. We also know that
every subgroup and factor group of an abelian group is also abelian. Now let
G=Go2G12G>... ©G=(e)

be a composition series of G. Then each non-trivial factor group G'—_l is simple. As G is abelian,

therefore, % is abelian simple group. Hence by above discussion order of % IS prime i.e.
i i

Gr =G,_1 and of Gra

r r

o( Gci;_l.):pi. Since )=pr , therefore, o( G;_1)=p-.
i

Further pr.1= o gf—i ) = z((gr—i)) - O(CE)r_Z)
r— r— r

, therefore, 0(Gr.2) =pipr-1. Continuing in

this way, we get o(G)=ps... pipr-1. Hence G is finite.

1.4.4 Theorem. If group G has a composition series then prove that
(1) Every factor group has a composition series
(i) Every normal subgroup of G has a composition series
Proof. Let

DDE, GJUS&T, Hisar 10 |



ALGEBRA MAL-511

G=Gp2G12G22... 2Gm=(e) 1)

be the composition series of group G. Then each factor group GG—' is simple forall i, 0 <i<m-

i+1

1.
(i) Let H be normal subgroup of G. Consider the quotient group % Since HAG (H is normal in

G), therefore, HG; is a subgroup of G containing H and HA HG;. Further HAG and Gi:1 A Gj,
HGiy , HGi
H
HGq 5 HG 5 HGy - HG, _H
H H H H

therefore, HG;+1 A HG; and hence

Consider the series E =

)
: L . G
By above discussion it is a subnormal series of R

Define a mapping f: Gi HG;

- by f(aG;)= aHGi.1 where ac G;.
Ginp HGju

This mapping is well defined since aGi.1= bGis1 = ab™eGis1. Since Givg < HGu1,
therefore, ab™® eHG;1. Hence aHG; = bHG;.

This mapping is homomorphism also since f(abG;)= abHG; = aHG; .bHG;=
f(aG)f(bG).

Since for xHGj;1 € Gi

where x € HG; =GjH, we have x= gh for some geG;
i+1

and heH. Then xHG;:+1=ghHGj.1= gHG;+1 = f(gGi.1). This mapping is onto also.

Gi
o Gin o HG
Now by fundamental theorem of homomorphism, = . Further we
kerf HGj4

know that Ker f is always a normal subgroup of Gi . But Gi is simple, therefore, Ker f =

i+1 i+1

]
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.| ]
Gj Gj Gij Gij
Gi Giu identi Gi Giv _ Giu _ G Giv _ Giv _ _Gi
or =G, (identity of ). Then = = or = = "Ik —_—1
Gin  Gin Gin kerf  Gi  Giy  kerf Gy Gin
Gi+1
HG;
Gi _ HG; . HG; . _ HGi _ H
Hence for every case, —— = Lj.e. _js simple. But |~ . Therefore,
YO e THGL, T HGiyg P HGi,; HGiu
H
HG;
H . . L . - . G
—~— Is simple. Hence the series in (2) is a composition series for — .
HGj 4 P @ P H
H

(if) H is subgroup of G, therefore, HNG;j is subgroup of G. It is also subgroup of H. Since Gj.+1 A
Gi, therefore, HNGi+1 A HNG;. Let H=HNG;. Then the series
H=Ho2> Hio... oDHm>{e} 3
is a subnormal series for H.
Since Gj o Gi, therefore, Hiv1=HNGi+1=(HN(GiNGi+1)=(HNGi))NGi+1 =HiNGj+1. Since
we know that if A and B are subgroup of G with B is normal in G, then AB ;i , therefore,
B ANnB
for two subgroups H;and Gi.1 of G; where Gj.1 is normal in G, we have
H Hi  _HiGina

= = (4)
Hiip HinGig  Gip

Since Hi=HNG; and Gi+1 AG;, therefore, HiG;.1 is a subgroup of G; containing Gi:;. Since Ha G,

therefore, H A G;. Hence Hi=HNG; A G;. As Gi:1 A Gj, and H; A G;, therefore, H;Gj+1 is a normal

subgroup of G;. Hence HiGiyg is a normal subgroup of Gi . But Gi is simple, therefore,
i+1 i+l i+1
HiGix — Gi HiGix =Gi.1. Now HiGix = Gis1 = H;Gi 1= Gisy and HiGiu — Gi
Gin  Gin Gin Gin Giy Gij1

H;Gj 1= Gi. Hence either M is trivial group or non-trivial simple group. But then by (4),
i+1

]
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Hi

is trivial or non-trivial simple group. Hence (3) is the composition series for H. It proves
i+1

the result.

Theorem. (Jordan Theorem). Any two composition series of a finite group are equivalent.
Proof. Let G=G;2G1D...0Gs={e}, Q)

G=HooH12...oH={e} 2
be two composition series of a group G.

By definition of composition series it is clear that a composition series can not refined
properly. Equivalently, if from refinement of a composition series if we omit repeated terms then
we get the original composition series. By Scheier’s Theorem, series in (1) and (2) have
isomorphic refinement and hence by omitting the trivial factor group of the refinement we see

that the original series are isomorphic and therefore, s=t.

Example. Let G be a cyclic group of order 18. Find composition series for G

Solution. Let G=<a>. Then order of a is 18. As G is abelian, therefore, every subgroup of G is

cyclic. Consider Gi=<a’>={e, @ a’, a° a° a' a'% a' a'®} G,=<a®>={e, a° a'?}, Gi={e}.

Consider the series:
G=Go2G12G,0G3={e}.

The orders of &, ﬂ & are 2, 3 and 3 respectively, which are prime numbers. Therefore,
G Gy G3

factor groups of above series are simple and hence it is a composition series for G.

Similarly, by taking, G=Ho=<a>, Hi=<a®>={e, &°, a°, a°, a*, a’°}, H,=<a®>={e, a°, a'*}

and Hs={e}, we get the factor groups %, % % are 3, 2 and 3 respectively. Hence series
1 2 3

G=H;oHi1oH,oH3={e}

]
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Ho .G H Go

is also a composition series for G. Further, it is easy to see that = : = and
Hi Gy, Hy G

% E% Similarly we see that by taking G=Ho=<a>, Hy=<a>>, H,=<a’> and Hs={e} gives us
3 3

another composition series for G.

Example. Show that if G is a group of order p", p is prime number. Then G has a composition
series such that all its composition factors are of order p.

Solution. Let G=Gy2Go...oGs={e} be the composition series for G. Since o(G)=p", therefore,
order of every subgroup of G is some power of p. But then order of each composition factor

Gi1 . . . G;j . . G;j
G'—‘l is p', i<n. If i>1, then G'—‘l has a non trivial centre, contradicting that ——t
i i i

is simple.

Hence k=1 i.e. each composition factor is of prime order. It proves the result.

1.5 COMMUTATOR SUBGROUP.

1.5.1 Definition (Commutator) Let G be a group. The commutator of the ordered pair of elements X,
y in the group G is the element xy*x y. It is denoted by [x, y]. Similarly if H and K are two
subgroups of G, then for heH and keK, [h, k] is the commutator of ordered pair (h, k).

1.5.2 Commutator subgroup. Let G be a group. The subgroup G of G generated by commutators of

G is called the commutator subgroup of G i.e. G= {[x, v]| X, y €G}. Itis also called the derived
subgroup of G. Similarly [H, K] = <[h, k] > denotes the commutator subgroup of H and
K.

n
Note. If xe[H, K], then x= [1[h;j,kj]¥ where hieH, kieK and ;= +1.
i=1

Since [h, k]=h*k*h k= (k*h?*k h)* =[k, h]*e[K, H] for all heH and keK,
therefore, [H, K] < [K, H]. Similarly [K, H] < [H, K]. Hence [H, K]=[K, H].

DDE, GJUS&T, Hisar 14 |
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We also define [x, y, z]=[[X, y] z]. In general [X1, Xa,..., Xn-1, Xn]= [[X1, X2,. .., Xn-1]

Xn]: [[[Xl, Xz,...,Xn.z] Xn-l] Xn] :....:[...[Xl, X2]... Xn-l] Xn].

1.5.3 Theorem. Let G be a group and G be its derived group then the following holds
(i) G is normal in G.
(i) G/G is abelian
(iii) If H is normal in G, then G/H is abelian if and only if G|gH.
Proof. (i) Since y'x y = xxyxy =x[x, y] V ye G and xe G . Since x and [x, y] € G ,
therefore, X[, y]= yx y € G . Hence G is normal in G.
(ii) Since [x, y]=x"'y’xye G for all x and yeG, therefore, x 'y 'xyG =G . Equivalently xy G =
G'yx. Hence xG'yG' :yG'xG'. As XG and yG' are arbitrary element of G/G', therefore, G/

G is abelian.

(iii) As G/H is abelian
iff xHyH=yHxH V¥ xHandyH € G/H
iff  x'y’xyH=H
iff  [x,y] eH

iff GIgH.

Example. Let G be a group and x, y and z are arbitrary elements of G then
Ixy, zI=[x, 2]’ [y, 2]
(ii) [x, yz]=[x, z][x, yI*
(i) [, 2 Y [y xP [y xhz]* =e where [x, )=y [x, z]y.
Solution. (i) L.H.S = [xy, z]= (xy)‘z*xyz = yx 'z 'xyz = y™x 'z x zzyz =yt zxzyy
7t vz = yUx, zZlyly, z]= [x,2)" [y.z]=R.H.S.
(i) It is easy to show

(iii) Since [x, 4, yJ? =zY[x, %, ylz = 2Y[[x, Y], y]z

DDE, GJUS&T, Hisar 15|
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=7'[x, 21" y'[x, 2]yz
:Z-l(x-l( Z-l)-l X Z-l)-l y-l(X-l( Z-l)-l X Z-l)yz

=7t rixyixtzx ztyz

=tz yxtzx zlyz 1)
Similarly [y, x'z]* =y xty %y x y x'zx (2)
and [z, v xP=z vz x'ztyzy*xy (3).

Hence by use of (1) , (2) and (3) we get that L.H.S is
2y 2y X Ty, x 2]
=xtzrixyxtzxzlyz 7t ylzxtztyz yixy yrxtyztytxy xtzx
=e =R.H.S.
1.5.4 Theorem. Prove that group G is abelian if and only if G ={e}

Proof. Let G be an abelian group, then for x and y in G, [x, y]= X'y y= x*x y™'y=e. Therefore,
G ={e}.

Conversely, suppose that G':{e}, then for arbitrary x and y in G, [Xx,y]e Gie. [X,
y]={e}. Hence x'y'x y =e. But then xy=yx. Hence G is abelian.

1.5.5 Example. Find commutator subgroup of S3; symmetric group of degree three.
Solution. Let G= S5,={I, (1 2), (1 3), (2 3), (123), (L32)}. ThenforxandyinG, [x, y]= xy
x y. We know that every cyclic of odd(even) length is even(odd) permutation, inverse of an
odd(even) permutation is always an odd(even) permutation and product of odd(even)
permutation with odd(even) permutation is always even permutation while product of odd(even)

permutation with even(odd) permutation is always odd permutation. Therefore, what ever x and y

may be [x, y] is always an even permutation. As Sz is not an abelian group, therefore, 83 ={e}.

Hence Sé = Ag, group of all even permutation.

1.5.6 Definition. Let G be a group. Define commutator subgroup (G')' of G as the group generated

by [x, y] where x and y are in G . It is second commutator subgroup of G denoted by G@.
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Similarly, G(k), K™ commutator subgroup of G is generated by [x, y], X and y belongs to
G(k—l)_

Example. (i) Find all GK) for G=S3, symmetric group of degree three.

Solution. By Example 1.5.5, (S3)' =Ag3. Since Az is group of order 3, therefore, Az is abelian.

Hence by Definition 1.5.6, (83)(2) = (A3)' ={e} and hence (S3)(k) ={e} vk>2.

(ii) If G={1, -1, i, -i, j, -}, k, -k}.Then G is group under the condition that i’=j’°=k*=-1, ij=k=-ji,
jk=i=-kj, ki=j=-ik. The set of all commutators of G is {1, -1}.

MORE RESULTS ON COMMUTATOR SUBGROUPS.
Theorem. If H and K are normal subgroup of G then
(i) If HAG (H is normal in G) then [H, K]cH. Similarly if K A G then [H,KlcK
(it) If both H and K are normal in G then [H, K] € HnK and [H, K]AG.
(iii) If G = <HUK >, then [H, K]AG.
Proof. (i) Let HAG and let [H, K]=<[h, k]>, heH and keK. Since H is normal in G, therefore, g°
'hgeH for all geG and heH.
As K c G, therefore, khkeH for all keK and heH. But then [h, k]= hk™hk

eH. i.e. every generator of [H, K] belongs to H. Hence [H, K] < H. Similarly we can show
that if K A G then [H, K]cK.
(i) By (i) it is easy to see that [H, K] < HNK. We have to show that [H, K]AG. Let geG

r .
and ue[H, K]. Then u= T1[h;, k;]% , where, hieH, kieK and aj ==*1. Since
i=1

[h, K]%= g™ h, K]g= g*h™ k™ hkg
=g'h*gg k*ggthgg'kg
=(@'hg)* (@ ka)* (g*h g)(g'k g)
= (W% (k%) "g(h% (k%)

]
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= [h?, K9].
As HAG and KaG, therefore, [h9, k%= [h, K]° €[H, K]. Further [H, K] is a group, [h, k]“e [H, K]
ie

[h, KI®<[H, K] *)

Now gug= uf= (iﬁl[hi,ki]ai 0 = iﬁl[hi,ki]aig <[H, K] (by use of (¥)).
Hence [H, K] is normal in G.
(iii) Since G=<HUK>, therefore, geG is of the form u?l..u®™, ui € HUK and aj =+1.
Further u;i e HUK, therefore, we can write g= Uj.. Uy, uie HUK.
Let h, hyeH, keK. Then
[h,K]M" =hy Y h, KJhy = hy =tk thkhy
= (hhy) "tk th(hykkthy Lykhy
= (hhy) "tk (hhy)kkthy khy
=[hhy,K][k, h{] e[H, K] (- [H, K]=[K,H]).
Again if heH, k, k; eK. Then
[h, K]kt = kg2, Klkq = kg =2k Thkkg
= kg hkghh kg 2k thkkg
=[kq, h][h,Kk{] e[H, K] (. [H, K]=[K,H]).
Thus for all h, h; eH and k, kieK,
[h, K]t and [h, k]™ [H, K]
and hence [h,K] ™ tand [h, k] ™ also belongs to [H, K]. i.e. [n,KJ?Kt and [h,k]?*" belongs to

[H, K].

Now geG = g=u; Us...un, UieHUK and

n
ye[H, K] = y=T1[h;,k;]% , where hieH, kieK , n>0.
i=1
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Now glyg=y® =(I[h kiI®)9=Tihy kiT™9 . since  [h,ki® =[hi, kil Ym . uieHUK,
i=1 i=1
therefore, by above discussion, [h;,ki]% [H, K] which further implies that [h;, k%9 e[H, K].

n
From this we get y?= (T1[h;, k;]%)? e[H, K]. Hence [H, K] is normal in G.
i=1

1.6.2 Theorem (P Hall Lemma). State and prove three subgroup Lemma of P Hall.

Statement. If A, B, C and M are subgroup of G, MAG, [B, C, AlcM and [C, A, B]=M then

[A, B, C] JeM.
Proof. Let acA, beB and ceC. Since [a, b?, c]°[b, ¢?, a]°[c, a*, b]*=e, therefore, [a, b™, c]°=[b,
¢t al[c, a?, b]™. 1)

Now by our choice
[c, a™, b]=[[c, a*] b]e[[C, A], B]=[C, A, B]lcM.
As M is normal subgroup of G, therefore,
[c,a™, b] eM =[c, at, b]* eM =[c, a?, b]? eM*=a*Ma=M.
Similarly [b, ¢, a]® €[B, C, A] € M. Now by (1), [a, b c]® eM. But then

@bLcP)P " emMP™ —bMbL=Mie.

[a,b'l,C]el\/I Y aeA, beB, ceC (2).
Using b in place of b™ we get
[a, b, c]=[[a, b],c]eM V acA, beB, ceC (3)
Similarly [b, a™, c][a, ¢, b][c, b, a]°=e
= [b,a,c]leM VYV aeA, beB, ceC 4)

As [b, a, c] =[[b, a], c]eM and [a, b]™*=[b, a], therefore, [[a, b]™*, c] eM. Now [[a, b], ¢] eM (by(
3)) and [[a, b]™?, c] eM implies that

[[a, b]® c] eM, where e=%1 (5)
Let ze[A, B, C]=[[A, B], C]. Then

z:(FI[Xi,Ci]gi) , Xi€[A, B], cieC and gj =+1 (6)
i=1
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n .
In particular, put x;=x, ci=c. Since xe[A, B], therefore, x= (11 [aj,bj]nl), gjeA, bjeB, nj=11.
I

Since [x, c]=[ (_Pll[aj,bj]nj), c] or _Pll[[aj,bj]nj,c]hj , hjeG and by (5) [[aj,bj]nj,c]eM,
= =

therefore, [x, c] eM i.e. [xi, ¢;] eM. But then [xi, ¢i]* eM i.e. [X;, G
n
From (6), z =(I1[X;,Ci]%") eMi.e.if z €[A, B, C]=zeM. Hence [A, B, C]lcM.
i=1

Example. Show that [x, z, Y] [y, X, 2"] [z, y, x“]=e
Solution. Since [x, z, Y] = [[x, z], Y*1=[x z]™ (¥*)'[x, z] (¥*)
=(x"Zxz)™" (Xhyx)™T (XTZ7x2) (X yx)
=7%M 2 x xy I x Tz xz xtyx
=7%" z yz%z xtyx (1),
[y, x, 21 = [y, X1, 21 = [y, x]™* (2 ) 'y, ] (¥)
=(y )™ (v zy) " (XN zy)
=Xyt xyyzlyy'xtyxy'zy
=xtytxzixtyxylzy (2)
[z,y, X1 = [[z, Y], X' 1 = [z, Y] () [z, y] ()
=(Z'y'zyy z'x 2y 2y 2 y)(z'x 2)
=ylzlyzzz 2 yzy 7% z
=ylz7lyxtylzyzix z (3)
Now by (1), (2) and (3), we get L.H.S
X,z Y1y, x, 2] [z, y, X]
=zt zylztxe xtyx xtytx 2ty xylizy yizty xty 'tz y 27 z
=e =R.H.S.
INVARIANT SERIES AND CHIEF SERIES.

Definition (Invariant series) A series
G=Go2G12... 2G={e}.

of subgroups of G where each GjA G, 1<i<r, is called invariant series.

]
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Example. Show that every central series is invariant but converse may not be true.
Solution. By definition of central series, every G; A G, therefore, every central series is invariant.
For converse part take G=S3, symmetric group of degree 3. Consider the series
SgZGoQGlz{E}.
Clearly it is invariant series because G;AG. But ((33— S3.Asfor(12)and (123)eS; (1
1
2)(1 2 3)=(1 3)= (2 3)= (1 2 3)(12) i.e. (1 2) does not commute with all the element of Ss.

Therefore, Z(—) Z(S3) #S3. Hence G—¢Z(—)
G G

Definition.(Chief series). A chief series of a group G is an invariant series
G=G2G1D... 2G{e}
of G such that Gi.; o Gj and if Gi.;o> N o G; with NAG, then either Gi.;=N or N=G;. The factor

groups % are called the chief factors.
i
Note. Chief series is an invariant series that can not be defined in a non trivial manner. The chief
factors need not be a simple group. For example take A4 and consider the series
A=Go2 G1=V4={l, (12)(34), (1 3)(24), (1 4)(2 3)}=C1={e}-
Then it is easy to see that each G; A G and there is no normal subgroup of G between G;.; and G;.
Gy _

But the chief factor G 2/} V, which is not simple because {I, (1 2)(3 4)} is normal in V.
2

Theorem. Any two invariant series for a given group have isomorphic refinements.
Proof. Let the group G has two invariant series
G=Go2G12...2G={¢e}, @
G=HooHio...oH={e} )
of a group G. Since Gis1 is normal in G and (GinH;) is a subgroup of G, therefore,
Gi+1(GinH;j)=(GinH;) Gis1 i.e. Gis1(GinH;) is a subgroup of G. Define,

]
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Gij=Gi+1(GinHj); 0<i <s-1, 0< j< .
Similarly define,
Hi =Hik+1(HkNGy); 0< k<t-1,0<r<s.
Since HjacH;, therefore, (GinHj1)=(GinH;). But then Giu(GinHjv) <Gia(GinHj) i.e.
Gij+1<Gij. Giis normal in G and H; is normal in G, therefore, (GinH;) is normal in G and Hence
GijA G. Now by use of (1) and (2) we get,
Gi 0 = Gi+1(GinHo) = Gi+1Gi = Gi and Gj ¢ = Gi+1(GinHy) = Gi+1Gs = Gis1
Consider the series
G=Go=Go02Go1 =Gp22... 2G0t=G1= G102 G611 =G122 ... 2611=G= G202
Go1 =G2220...06G21=G3=G302G31 =G322 ... 0G3t=G4=Gsp D ... 2 Gs1 = Gs10 DGs-
122 ... 2Gs1=Cs. 3)
and
H=Ho=Hoo2Ho1 =Ho22 ... 2Hos=Hi=Hio2oHi1 =Hi2 2 ... 2 H1s=H=Hz0 2
Ha1 =H2 2 ... 2 Hos=Hs=H3p 2o H31 =Hs2 2 ... 2 H3s=Hs=Hs0 2 ... 2 Hea = Hio 2He
122 ... 2Hus=He. (4)
for G. By above discussion the series (3) and (4) are invariant series and are refinements of series
(1) and (2). Clearly both the series in (3) and (4) have st+1 terms.
As Gj+1AG, therefore, Giji1 A Gi. Similarly Hj.1 A Hj. Hence by Zassenhaus Lemma
Gin(GinHj) _ Hju(GinH) = Gjj _ Hji

~ i.e. =~ . Thus there is a one-one
Gin(GinHjy) Hju(GizanHj)  Gijau  Hijin

correspondence between factor groups of series (3) and (4) such that corresponding factor groups

are isomorphic. Hence the two refinements are isomorphic.

1.7.5 Theorem. In a group with a chief series every chief series is isomorphic to given series.
Proof. As by the definition of chief series every chief series is isomorphic to its refinement. Let
G=Go2G12...2Gs={¢e}, )
and G=HooH1o...oH={e} (2)

are two chief series of group G.
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Since Gj+1 is normal in G; and (GinH;) is a subgroup of G;, therefore, Gi:+1(GinH;)= (GinH;) Gi+1
I.e. Gi+1(GinH;) is a subgroup of G. Define,
Gij=Gi+x1(GinH;); 0<i <s-1, 0< j< .
Similarly define,
Hi =Hik+1(HkNGy); 0< k<t-1,0<r<s.

As G; is normal in G; and Hj+1 is normal in H;, therefore, (GinH;+1) is normal in (GinH;). Since
Gi+1 is normal in Gjs1 , therefore, Gi+1(GinHj+1) is normal in Gi:1(GinH;). Now by use of (1) and
(2) we get,
Gi 0 = Gi+1(GinHo) = Gix1Gi = Gij and Gj,t = Gi+1(GiNHy) = Gi+1Gs = G+t
Hence we have a series

G=Go=Go02Go1 =Go22... 2601=G1=G10 2611 =G122 ... 2G11=G2= G20 2
G21 =622 ... 2621=G3= G302 631 =G322 ... 2G3t=G4= G022 ... 2 Gs1 = Gs10 2Gs-
122 ... 2 Gs1t=Gs. 3)
Since each G; for 0< i <s occurs in subnormal series (3), Hence (3) is a refinement of subnormal
series (1).
Similarly, series

H=Ho=Hoo 2 Ho1 =Ho22 ... 2Hos=Hi=Hio2Hi1 =Hi2 > ... 2 His=H>=Hap

DHat =H2o2 ... 2D Has=H3=H3po 2 Hs31 =Hs22 ... 2H3s=Hs=Hyo 2 ... 2 He1x = Hiap
DHi12 2 ... D Hers =He 4)
is a refinement of subnormal series(2). Clearly both the series in (3) and (4) have (st+1) terms.
But then by Zassenhaus Lemma series (3) and (4) are isomorphic. Since by definition of chief
series, series (1) is isomorphic to series (3) and series (2) is isomorphic to series (4). Hence series

(1) and (2) isomorphic. It proves the result.

Definition. (Derived series). Let G be a group. Define 8o(G)=G and &i(G)= (.1 (G) for each
i>1. Then 061(G)= 6(G). Then the series
G=80(G)=2 81(G)=... 28/(C)={e}

is called derived series for G.

]
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1.8 CHECK YOUR PROGRESS

(i) Write all normal series of G, where G is same as discussed in 1.2.2

(ii) Give one example of a subnormal series which is not normal

(iii) Write all refinements of Sy Ay 2 V42 ()

(iv) Write the length of composition series of G = {1,—1,i,—i,j, —j, k, —k}, where i? = jZ =

k? = —1,ij = —ji = k. Also write its composition series
1.9 SUMMARY

This chapter contains subnormal and normal series, refinements, Zassenhaus lemma,
Schreier’s refinement theorem, Jordan Holder theorem, composition series, derived series,
commutator subgroups and their properties, Three subgroup lemma of P. Hall, Chief series,

derived series and related theorems.
1.10 KEYWORDS
Normal series, Subnormal series, Zassenhaus lemma, Jordan Holder theorem, Commutators etc.

1.11 SELF-ASSESSMENT TEST

(1) Write all the composition series for octic group.
(2) Find composition series for Klein four group.
(3) Find all the composition series Z/<30>. Verify that they are equivalent.
(4) If a, b are elements of a group for which a*>=(ab)®=(ab™)*=e then
[a, b, b]=e.
(5) If x, y are arbitrary elements in a group of exponent 3 then [X, y, y] =1.

1.12 ANSWERS TO CHECK YOUR PROGRESS
Answer of (i) {1,—1,i,—i} o {1,—-1} o {1},
{1,-1,i,—i} o {1}.
Answer of (ii) S, oV, 2 {[,(12)(34)} o {I}
Answer of (iii)
Sy DA, DV, o{I,(12)(34)} o {13,
Sy DA, DV, o{I,(13)(24)} o {13,

]
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S, DA, >V, o {I,(14)(23)} o {I}.
Answer of (iv) Do yourself with the help of Example(a) and Example (b) discussed after
Theorem 1.4.5.

1.13 REFERENCES/ SUGGESTED READINGS.
(1) The Theory of Groups; IAN D. MACDONALD, Oxford University Press
1968.
(2) Basic Abstract Algebra; P.B. BHATTARAYA, S.K.JAIN, S.R.
NAGPAUL, Cambridge University Press, Second Edition.
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Structure:
2.0 Learning Objectives

2.1 Introduction

2.2 Central Series
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2.5 Some definitions

2.6 Finite field extension
2.7 Prime fields

2.8 Check your progress
2.9 Summary

2.10 Keywords

2.11 Self-assessment test
2.12 Answers to check your progress

2.13 References/ Suggested readings

2.0 LEARNING OBJECTIVE: Objective of this chapter is to study some more properties

of groups by studying their factor group. Prime fields and finite field extensions are also studied.

2.1 INTRODUCTION. In first Chapter, we have study some series. In this chapter, we study

central series, Nilpotent groups, Solvable groups. Solvable groups have their application in the
problem that ‘whether general polynomial of degree n is solvable by radicals or not’. Prime fields

and finite field extensions are also studied.

]
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In Section 2.2, we study central, upper and lower central series of a group G. It is shown
that upper and lower central series has same length and is equal to the least length of any central
series.

In Section 2.3, we study Nilpotent groups and show that every factor group and subgroup
of Nilpotent group is again Nilpotent. We also see every Sylow subgroup of a nilpotent group is
normal and direct product of Nilpotent groups is again Nilpotent.

In Section 2.4, we study solvable groups and their properties. Next section contains some
definitions and finite field extensions are studied in Section 2.6. In the last Section, we study
about prime fields and see that prime fields are unique in the sense that every prime field of
characteristic zero is isomorphic to field of rational numbers and the fields with characteristic p

are isomorphic to Z,=Z/<p>, p is a prime number.

2.2 CENTRAL SERIES

2.2.1 Definition (Central series). Let G be a group. Then normal series
G=G2G12G:2... 2Gn=(e)

is central series for G if Gi A ( G ) Vi > 0.(i.e. all the factor groups Gi are central
i+1 Gin i+1

G,

1+1

subgroup of

Example. If G(={e}) is abelian group. Then G=Gy o> G;={e}. Then G; is normal in G. Further
So =G. Since G is abelian, therefore, Z(E) =Z(G)=G. Hence So - Z(E) . It shows that G
Gy Gy Gy Gy

has a central series.

2.2.2 Theorem. Prove that the series G =G, 2 G; 2 G, 2 -2 G, ={e} s a central series iff
[G,G;] € Gy, foralli,0<i<n-1.
Proof. Let
G=Gy2 G, 2 G, 220G, ={e} 1)
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be given series of subgroups of a group G.

Gi < Z( G ). Let x and

First we assume that it is a central series of G i.e. G;AG and
Gi+1 G|+1

y are arbitrary elements of G and G; respectively. Then xGj:; and yG;j,; are arbitrary elements of

G and Gi respectively. Since Gi cZ( G ), therefore, XGis1 YGi+1= YGis1 XGis1 i.€.
Gis Gis1 Gin Gin

XyGi+1= YXGis1 But then X'y 'xyGi.1= Gis1 i.e. [X, y]€Gis1. Hence the subgroup <[x, y]> =[G,
Gil<Gis1.

Conversely, suppose that [G, Gi]cGi+1. By (1), Gi«1 < G, therefore, [G, Gi] < G;. Let
x and y are arbitrary elements of G and G;,

Xyx=yy ' xtyx = y[x, y] G

(because y and [x, y]™* both are in G)).
Hence series (1) is normal series. Since [G, Gi]cGi:1 , therefore, for xeG and yeGi:1 we have [X,
y]e€Gi:1. Hence X'y 'XxyGis1= Gisy i.e. XGis1 YGis1= YGis1 XGis1. Since XxGis1 YGis1= YGis1 XGint

holds for all xeG and yeGi.1, therefore, yGi.1 e Z( G ). Hence Gi cZ( G ) and the
Giy1 Gin Gin

result follows.

Definition (Upper central series). Let Zo(G)={e} and let Zi(G) be a subgroup of G for which

Ziic(;é) = Z(Zi_cf(G)) for each i>1. If Zy(G)=G for some positive integer s then the series

{e}= Zo(G)c Zi(G)c...c Z(G)=G

is called upper central series.

Example. Show that every upper central series is also a central series.

Solution. Consider the upper central series {e}= Zo(G)c Zi(C)c...c Z(G)=G,

Z;i(G) (G) . . Z(G) . .
=Z( ) for each i>1. By definition, ———~- is a central subgroup, therefore, it
Zi1(G)  Zi(G) Zi1(G)
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is normal in % i.e. Zi(G) ¢i Zi(G) 9Zi(G)= ggigZi(G)e % V gie Zi(G) and geG.

2.25

2.2.6

Hence g™gigeZi(G) V¥ gie Zi(G) and geG and hence Zi(G) is normal in G.
Further 9Z;.1(G)gi Zi1(G)= i Zi1 (G) 9Zi1(G)= 98i Zi1(G)= ¢igZi1(G) = g™'0i'9gi Zi.
1(G)= Zi1(G) = [g, gil€Zi-1(G). Hence <[g, gi]>=[G, Zi(G)]< Zi.1. It proves the result that every

upper central series is a central series for G.

Definition.(Lower central series). If we define y1(G)=G and yi(G)=[yi.1, G], then the series
G=11(G)272(G)=... 2v+1(G)={e}

is called lower central series.

Since we know that G =y;(G) A G. If we suppose that yi.1(G)AG , then for x=[gi.,
9] €vi(G); g €G and gi.1€7i-1(G). Now for g*eG

(@) [9i1, 919* = [9i1, 917 =[0in®", g®]. But by induction yi.1(G)AG , therefore (g*)*[gi.1,
glg*<lyi-1(G), G]=vi(G) i.e. yi(G)AG for each i. Hence above series is a normal series.

Further [yi-1(G), G]= vi(G)= [yi-1(G), G]< yi(G). Hence it is central series for G. Now we

can say that every lower central series is also a central series.

Theorem. If G has a central series G=G;2G10G,>... Gi=(e) then G c Zi(G) and G;j 2 7i«1(G)
for 0<i <r.
Proof. We will prove the result by induction on i. When i=0, then G,={e}, Go=G, y1(G)= G and
Zo(G)={e}. Hence for this case G,.icZi(G) and Gioyi+1(G) holds.

Let us suppose that result hold for all i<r i.e. G,.j+1cZi-1(G) and Gi.1ovi(G).

Take an element xeG..;. We will show that x lies in Zj(G). Let y €G. Then [x, y] €[G,,
GJ]= Gri+1. As by induction hypothesis Gy.i+1 < Zi.1(G), therefore, [X, y] €Zi.1(G). Then [X, y]Zi.
1(G)= Zi4(G). Equivalently, x'y'xyZi.1(G)=Zi1(G) or XZi.1(G)yZi-1(G)=yZi1(G) XZi1(G). It

(G)
Zi1(G)

means that the elements xZ;.1(G) and yZ;.1(G) of the group commute. But y was

]
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(G)

arbitrary element of G, which shows that yZ;.1(G) is arbitrary in Z 10
i—1

and hence xZ;.1(G) is

(G) ©) .. Z(©G)
m. Now the centre of Z1(G) is Zi 1 (G)’

series. It then follow that xeZ;j(G). Hence G..i c Zi(G).

in the centre of

by definition of upper central

For second case by induction assumption Gi.12vi(G). Then yi+1(G) =  [yi(G), G] <[Gi.,
G]. But by definition of central series [Gi.1, G]=Gi. Hence vi+1(G)=G;.

Corollary. If G is nilpotent group then its upper and lower central series have the same length,
and this is the least length for any central series.
Proof. Let G be a nilpotent group and

G=Go2G12G22... 2G=(e)
be its central series of least length r. Further suppose that {e}= Zo(G)c
Z;(G)c...c Z(G)=G
be its upper central series and

G=11(G)272(G)=... 211 (G)={e}
be its lower central series.

Since G.icZi(G) and Gioyis 1(G) for 0< i <r. For i=r, G; 2 v+ 1(G). But then y.. 1(G)={e}.
This implies that t+1< r+1. Since every lower central series is again a central series, therefore, if
t+1< r+1, then we get a central series of length lower then r, a contradiction. Hence t+1= r+1.
Now we can say that length of lower central series is equal to length of central series of least
length.
Further fori = r,

Goc Z(G) = Z(G)=G.

Then s <r.If s < r, we get a central series (in form of an upper central series) of length less

than r, the least length of a central series. Hence s = r. It proves the result.

NILPOTENT GROUPS

]
DDE, GJUS&T, Hisar 30|



ALGEBRA

231

2.3.2

MAL-511

Definition (Nilpotent group). A group G is called nilpotent group of class r if it has a central

series of length r. i.e. if G=Gy2G10G,0... oG=(e) is a central series of G.

Example. Every abelian group is nilpotent group of class 1. In fact a group is abelian if it is
nilpotent group of class 1.

Theorem. Prove that finite p-group is nilpotent or every group of order p" is nilpotent, p is prime
number.

Proof. Since G is a finite p-group, therefore o(G)=p" for some n>1. We will prove the result by
applying induction on n. If n=1, then o(G)=p. But every group of prime order is abelian and
hence is nilpotent of class 1. Therefore, result holds for n=1. Suppose result holds for all group of

order p™ , m<n. Let o(G)=p". As p is prime which divides order of G, therefore, 0(Z(G))=p', 1< t
<n. As Z(G) is normal in G, the subgroup %has order p"* which is less than order of G.
G _ Gg 5 Gy
Z(G) Z(G)  Z0©)
Gy Gn—t Gj G Gj G

_ 2 — Giy
7(6) o..D 2(G) =Z(G) where Z(G)AZ(G) and [Z(G)’ Z(G)]_ 7(G) for all

Then by induction hypothesis % is nilpotent of class at most n-t. Let

=

0<i €n-t-1, be the central series for . Now consider the series

G
Z(G)
G 2G1 2622 ...2Gn+=Z(G) 2 Gn.t1={e}.

Since we know that EAE iff KAG containing H, therefore, iAi implies that each G;
H H Z2(G) Z(G)

A G, 0<i < n-t-1. Gy is also normal in G (because centre of a group is always normal in G).

Gi , G lc Gin , therefore, for all xeG; and yeG,
2(G) Z(G)— ZG)

Hence it is a normal series of G. As [

Gi (show it). Hence [x, y] € Gi+1 i.e. [Gi, G]€Gi+1, 0 <i<n-t-1. Further for i=n-t,

[x,y]Z(G) € 2(G)

]
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xeZ(G) and ye G, [x, y]={e}. Hence {e}=[Gy., G] <=Gnt:1. Therefore, it is required central

series for G.

Theorem. Let G be a nilpotent group of r, then
(i) each factor group is nilpotent of class <r,
(ii) each subgroup is also nilpotent of class <r.
Proof. It is given that G is nilpotent of class r, therefore, G has a central series
G=G2G1D... 2G{e}.
where each GiAG and [Gi.1, G]cGi, 1< i <r. Let H be a subgroup of G, therefore, H=HNG; is
subgroup of G. It is also subgroup of H. Since HAG and G;AG , therefore, HNG; A HNG. Then
the series
H=Ho2> Hio... oHiof{e} )
is a normal series for H. Now
[Hi1, H]= [HNGi.1, H]<[Gi1, G] =Gi and
[Hi1, H]= [HNGiq, Hlc[H, H] cH.

Hence [Hi.1, H] =GinH=H;. Hence (*) is central series for H. It proves the result.

(ii) Let HAG. Consider the factor group % Since GjaAG and HAG , therefore, GiH=HG; AG and

contains H as its normal subgroup. Hence ﬂAE Also for i=r, ﬂ ﬂe:H and for i=0,
H H H H
HTGO:%_ Since G; < Gj.4, therefore, HG; cHG;.;. But then ﬂ H?_'_l Now by above
discussion the series
EZHGOQ HG]';),,.;) HGF:H @)
H H H H
is normal series of % Let [E %] =<[xgiH, yH]>. Since for xeH, xH=Hx=H, therefore,

[xgiH, YHI=((xgi) *H)(y H)(xgiH)(yH)=gi X *Hy™* HxgiH yH=gi"H y*HgiHyH= gi"'y‘giyH=[g;,

ylH=[gi, Y]hH. Now [gi, y]€Gi.1 for all gieG; and yeG, therefore, [gi, gJh He ———— Gi- 5 1H . But Gj1
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and H are normal subgroup of G, therefore, Gi.;H=HG;.;. Hence [xgiH, yH] e % But then [

HG; G, _HGi
H'H = H

class at most r.

. . i G G . .
. It shows that series (2) is a central series for R Hence g is nilpotent of

Theorem. If G is a nilpotent group and H(#{e}) is a normal subgroup of G, then HNZ(G) #{e},
Z(G) is the centre of G.
Proof. It is given that G is nilpotent of class r, therefore, G has a central series

G=G2G1D... 2Gx{e}.
where each GiAG and [Gi.1, G]cGi, 1< i <r. Let H={e}be a normal subgroup of G. Let us
suppose that HNZ(G)={e}. Since G is nilpotent of class r, therefore, Gri#{e}. As [G,
G]cG={e}, therefore, every element of G,.; commutes with every element of G. Hence G,; ¢
Z(G). Now by our assumption HNG.1.cHNZ(G)={e}. Further HNGo(=G)=H =#{e}, therefore,
there exist integer k , 1< k <r-1 such that

HNGya#{e} and HNGk ={e} (D)

Consider [HNGy.1, G] <[Gk.1, G] < Gk and [HNGy.1, G] <[H, G] < H (because H is
normal in G). Hence [HNGk.1, GlcHNGy={e}. But then HNGy.1 <Z(G). Therefore, HNGy.1c
HNZ(G)={e}, a contradiction to (1). Hence a contradiction to the assumption that HNZ(G)={e}.
It proves that HNZ(G) ={e}.

Theorem. Prove that in a nilpotent group every proper subgroup is properly contained in its
normalizer.
Proof. It is given that G is nilpotent(of class r), therefore, G has a central series
G=G2G1D... 2Gx{e}.
where each Gj A G and [Gj.1, G]cG;j, 1<i <r. Let H be a proper subgroup of G. Then [G.,

G]cG={e}cH (because {e}cH). Since HG=Gy, therefore, there exist a positive integer k such

that Gy ¢ H and Gy:1 cH, 0< k < r-1.But then [Gy, H]<[Gk, G]l=Gk+1cH. Thus heH and xeG,

]
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[x, hleH= x"h*xheH. Equivalently, x*h"xeH or xhxeH i.e. x*HxcH V xeGy . Further for
xeGy, XteGy. Hence (x)*Hx'cH i.e. xHx cH. But then xHx?cH= H < xHx. By above
discussion H = x™*Hx or xH=Hx ¥ xeGy. Therefore, by definition of normalizer of H. GxcN(H).

But H is a proper subgroup of G. Hence H & N(H). It proves the result.

Definition (i)(Sylow’s subgroup) Let G be a finite group of order p™q, gcd(p, g)=1, then a
subgroup H of order p™ is called Sylow’s p-group or p-

Sylow group.

(i) Maximal subgroup. Let G be a group. The proper subgroup H of G is called maximal

subgroup if HCKcG, then either K=H or K=G.

Theorem. Prove that in a nilpotent group all the maximal subgroups are normal.
Proof. Let G be a nilpotent group and M is a maximal subgroup of G. Then M=G i.e. M is a
proper subgroup of G. But we know that a proper subgroup of a nilpotent group is always a

proper subgroup of its normalizer. Therefore, Mc N(M). As M is maximal subgroup, therefore,
#

N(M)=G. Hence M is normal in G.

Theorem. Prove that in a nilpotent group all the Sylow p-subgroups are normal

Proof. Let P be a Sylow-p subgroup of nilpotent group G. It is sufficient to show that N(P)=G.
We know that for a Sylow-p subgroup N(P)=N(N(P)). Now let if possible N(P)=G. Then N(P) is
a proper subgroup of G and hence will be a proper subgroup of its normalizer i.e. N(P)c
N(N(P)). But this is a contradiction to the fact that N(P)=N(N(P)). Since this contradiction arises
due to the assumption that N(P)=G. Hence N(P)=G. Therefore, every Sylow-p subgroup of

nilpotent group G is normal.

Theorem. Prove that a finite direct product of nilpotent groups is again nilpotent.
Proof. For proving the theorem, first we will show that direct product of two nilpotent groups is

again nilpotent. Let H and K are two nilpotent groups. Since the length of a central series can be

]
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increased (by repeating term {e} as many time as required), therefore, without loss of generality,
we can suppose that central series of H and K have same length r and these series are as:

H=HooHi2... oH={e},
where each HjA H and [Hi.;, H] < Hj, 1<i <.
Similarly,

K=KooKiD... oK=>{e}.

where each KjaK and [Kj.;, K]cK;j, 1<i<r.
Since, Hic Hi.1 and K < Ki.1, therefore, Hi x Kic Hi.1 x Kj.1. Consider the series

HxK=HoxKo2 HixKj o... DHxK:2{(e,e)} Q)
As hhiheH;, k'kikeK; ¥ heH, hieH;, keK and kieK; (because HiaH and K;aK), therefore, (h,
K)(hi, ki)(h, K)=(h™, k(i ki)(h, k)= (h*hih, k'kik) eHixK;. Hence for each i, HixK; A HxK
and Hence (*) is normal series.

Let [(hi-1, ki-1), (h, k)] be an arbitrary element of [H;.1xKj.1, HxK] Since
[(his, ki), (h, K)I=(hia, Kia) H(h, K)(hia, kia)(h, K)
=(hix™, Kia )™, K™Y (hig, kig)(h, K)
= (hia " thigh, ki 'k kiak)
= ([hia, W], [Ki-1, KD € ([Hi1, HLIK1, K]).

As [Hi.1, H]lcH; and [Ki.1, K]cK; for 1< i <, therefore, [(hi.1, ki-1), (h, k)] eHixK;. Hence [H;.
1xKi.1, HxK] < HixK;. It shows that series (1) is a central series for HxK. Therefore, HxK is
nilpotent. Take another nilpotent group T. Since HxK is nilpotent, therefore, by above discussion
(HxK)xT= HxKxT is also nilpotent. Continuing in this way we get that if Hj, Ha,..., H, are

nilpotent then HixHyx... xH, is also nilpotent.

2.3.10 Theorem. Let G be a finite group. Then the following conditions are equivalent.
(i) G is nilpotent.
(it) All maximal subgroup of G are normal.
(i) All Sylow p-subgroup of G are normal

(iv) Element of co-prime order commutes
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(v) G is direct product of its Sylow p-subgroups

Proof. Let G be a finite group. We will prove the result as:

()=>(ii). It is given that G is nilpotent. Let M be a maximal subgroup of G. If MG, then M is
proper subgroup of its N(M), normalizer of M. But than N(M)=G. Hence M is normal in G.
(ify=(iii). Let Gy be a Sylow p-subgroup of G. We have to prove N(G,)=G. Suppose that
N(Gp)=G. Since G is finite, therefore, there exist a maximal subgroup M of G such that
N(Gp)=McG and M=G. Since G, is Sylow p-subgroup of G and N(Gy)cM, therefore, N(M)=M.
Further by (ii) , N(M)=G. Hence M=G, a contradiction. Hence N(G,)=G i.e. G, is normal in G.
(iii)=(iv). Let x and yeG be such that (o(x), o(y))=1. Since the result holds for x=e or y=e,

therefore, without loss of generality we suppose that x#e and y=ze. Then o(x)=m(>1) and
o(y)=n(>1), gcd(m, n)=1. Let m= p(lxlpgz..p?‘f and n =qf1q[232..qgs , where p; and g are distinct
primes and o and Bj are positive integers. Since p; and g; are distinct primes, therefore, gcd(p;,
q;)=1.

We know that if o(x)=p“, then xeG,, Sylow p-subgoup. Similarly yeGq, Sylow
g-subgoup if o(y)=g". By (iii) G,AG and G4 AG, therefore, for xe G, and yeGg, X'y xye

GpnGy={e}. Hence x 'y 'xy=e i.e. xy=yx.

m .
If we take mM; =— Then gcd(mg, my, ..., m;)=1. Hence we can integers such
i |
that a5, @, .., a sSuch that ajm+..+ ami+ ..+am=1. Now  x=x' =

My +. AQM B My BMy @My arMy

X =X For 1<i<r, choose X;=x%"M. Then x

[or] “m.n% ) .
X1...Xi...x; and (xi)|Oi| — )HMP — (%)M —e. Hence o(x)| ;' i.e. o(x) is a power of p;,
therefore, for each i, there exist Gpi (Sylow pi-subgroup) such that xie Gpi' Now by above
discussion Xxixj=xjX;. Similarly y=yi...yt...ys, Yt € qu and all y; commute with each other. By

the same reason Xi Yi=YiXi. Hence XY=X1...Xi...Xr Y1...¥t...¥s = Y1.. . V... ¥s X1.. X .. X =YX

]
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(iv)=(v) It is given that elements of co-prime order commute, we have to prove that G is direct
product of its Sylow subgroups. Let o(G)= pyp52..ppT, pi’s are distinct primes. Since, for 1< i
<r, p;"1|0(G), G always have Gp, Sylow pi-subgoup of order pj*i.

Let xe Gpi and ye Gpj . Then order of x is some power of p; and order of y is some
power of p;j, therefore, gcd(o(x), o(y))=1. Now by given condition xy=yx. Let xeG, then

o(x)|o(G). Therefore, o(x)= plﬁlpgz...p?r =u, 0<PBj <a;. If we take Uj :%. Then ged(uy, Uy,
P’

I
..., uy)=1. Hence we can integers such that aj, ay, ..., a; such that a;u;+...+ ajui+ ...+a;u=1. Now

1

X=X — Xa1u1+...+aiui +.4a,U, — Xalulnxaiui __Xarur .

For 1<i<r, choosex; =x%'i. Then

X=X1...Xi...x; and (xi)IDiBi :(x)aiuiIOPi =(x)%Y =e. Hence o(xi)|p%3i i.e. o(x;) is a power of p;,
therefore, for each i, there exist Gpi (Sylow pj-subgroup) such that x;e Gpi . Therefore, by given
condition xjx;=x;Xi. But then Gpi AG. hence Gpi is unique sylow p; subgroup of G. Now for
X; eri . A<i<r, XEGplez'“Gpr cG. ie. Gnglez“'Gpr cG. In other words
G=Gp,Gp,.-Gp, -

For given i, let if possible, e;«rsteri mGpl'“Gpi_lem“'Gpr . Then teri =o(t) is

r .
some power of p; and tEGpl"'Gpi—leHl'"Gpr' Let k=TI p‘jlj. Then t* = e (because
j;i

Gpl...Gpi_lG 'Gpr is a group of order k and t is its element). But then pjlk, a contradiction.

Pina
Therefore, t=e i.e. Gp NGy ..Gp. Gp. ,.-Gp. ={e}. It proves that G is direct product of its

Sylow subgroups.

(v)=(i) We know that each Sylow subgroup is a p-subgroup and each p group is nilpotent. Now
using the fact that direct product of nilpotent group is nilpotent group, G is nilpotent (because by
(v) G is direct product of p subgroups).
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SOLVABLE GROUP.

Definition.(Solvable group). A group G is said to be solvable if there exist a finite subnormal

series for G such that each of its quotient group is abelian i.e. there exist a finite sequence

G=G2G10G,2... Gy=(e) of subgroup of G in which each Gj:; is normal in G; and Gi is

i+1
abelian for each i, 0 <i <n-1.

Note. If G is nilpotent group, then G has a central series, G=G¢2G12G,>... Gh=(e), where each

Gi_ 7 G

i+1 i+1

GiaG and ). Since Gi;; A G, therefore, Gi+1 A Gj also. More over

Gi A ( G ), therefore, being a subgroup of commutative group, Gi is abelian also.

Gi+1 Gi+1 i+1

Hence G is solvable i.e. every nilpotent group is solvable also.
But converse may not be true. Take G=S3 and consider the series
SgZGoQAgz 612{8}262.

Trivially {e} A As. Since index of Az in Sz is two, Az A S3. Therefore, it is a normal series for Ss.

G G . . .
Clearly order of =0 and G—l are prime numbers i.e. 2 and 3 respectively, therefore, the factor
1 2
groups are abelian. Hence G is solvable group.
It is also clear that each G; A G, therefore, it is a normal series for G. Since
S3
{e}

Z(S3)={e}, therefore, % =A3 & Z(S3) =Z(=2). Hence Ss is not nilpotent.

Theorem. Prove that every subgroup of a solvable group is again solvable.
Proof. Let G be solvable group. Then G has a subnormal series
G=Gy2G10G... ©Gh=(e) (1)

]
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such that Gi is abelian for each i, 0 <i < n-1. Let H be a subgroup of G. Define Hi=HNG; for
i+1

all i. Since intersection of two subgroups is always a subgroup of G, therefore, H; is a subgroup
of G. Further since Gj;+1AG;, therefore, Hi.1= HNGis1a HNGi=H;. Then the series
H=Ho>H:1oH:>... oH.=(e)

is subnormal series of H.

Define a mapping ¢: Hi— Gi by setting ¢(x)= XGis1 V XeH;. Now
i+1
XxeHi=HNG; = xeG;. But then xGjs1e Gi , therefore, mapping is well defined. Further for x
i+1

and yeH;, we have ¢(xy)= XyGi+1= XGi+1YGi+1=¢(X)d(y). Therefore, ¢ is an homomorphism.

Further ker o={xeHi| ¢(x)=Gj+1=(identity of GGi )}. Therefore,

i+1

xeker ¢ iff ¢(X)=Gj+1 iff XGi11=Gis1 iff XeGjysq iff XeHNG; iff XeHis1. Hence ker ¢= His.

Then by Fundamental theorem on homomorphism, |_I|_I—' = ¢(H;). Being a subset of an abelian
i+1

Gi Hi

is isomorphic to an abelian group, therefore,

group ——, d(H;i) is also abelian. Since

i+1 I'|i+1

H: . ) )
L s also abelian. Hence H is solvable.

i+1

2.4.4 Example. If G is a group and H is a normal subgroup of G such that both H and % are solvable,
then G is solvable.

) ) G . . .
Solution. Since ﬁ is solvable, therefore, there exist a subnormal series

G—GOD Gl: D&
=2

H H= H

=H 1)

]
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Gj
Where each G;j is a subgroup of G containing H and each factor group GI-—Il is abelian. Now
1+
H

each %A% therefore, (xH)'lnyHe% V xeGjand yeGi.. But then x™'yxH e—GIi_|+1 "

xeG; and yeGis; which further implies that x'yxeGj,q V xeG; and yeGiyy i.e. Gi1AG;.

G

Since H = Gi , therefore, Gi is abelian also. Further ﬂzH:Gr:H.
Gi  Gig Giy H
H

Since H is solvable, therefore, there exist subnormal series H=Ho>H;oH»o... oH,=(e) such

that Hi is abelian for all 0 < i <n-1.
i+1

Now by above discussion series,
G=Go2G12G22... 2G=H=H;2oHi1oH:2... oH:=(e)

is a subnormal series for G such that each factor group of it is abelian. Hence G is solvable.

2.45 Theorem. A group G is solvable if and only if G®, k™ commutator subgroup is identity i.e.

GM={e}.

Proof. Let G¥={e} for some integer k. We will show that G is solvable. Let H)=G, H;=G®,
2 K o i i-1\1 i) - i-1 Gl

H,=G®,..., H=GY. Since GV=(G"™?, therefore, G” is a normal subgroup of G and =0

is abelian. But then series
G=HooHi1oH:2... oH«=(e)

is a subnormal series for G such that each factor group of it is abelian. Hence G is solvable.
Conversely, suppose that G is solvable group. We will prove that G®=e for some integer

k. Let G=NooN12N2o... oDNk={e} be a solvable series for G. Then each N; is normal in N;.; and
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Nig is abelian for all 1< i < k. Since we know that % is abelian iff the commutator subgroup
i

GW cH, therefore, Ni_l(l) < N;j. Thus
M =N =Ny
G = (G(l))(l) = Nl(l) < N». Continuing in this way we get ck < Nk ={e}. But then

c®) ={e}. It proves the result.

Corollary. Every homomorphic image of a solvable group is solvable.

Proof. Let G be a solvable group and G* be its homomorphic image under the mapping ¢. Now if

[, y] = x"y"'xy € GY, then ¢(x 'y 'xy) = ¢(x™) d(y™) $(9) d(¥) = () d(¥) d()d(y) = [6(X),
o(y)] eG*®. Similarly G*® = $(G™) =¢(e) = e*. Hence G* is solvable.

Corollary. Prove that every factor group of a solvable group is solvable.

Proof. Let G be solvable group and H be its normal subgroup of G. Consider the factor group %

and define a mapping ¢: G— % by setting ¢&(@)= gH V geG. Then ¢(g:192)=
g1Hg2H=0(g1)d(g2). Hence ¢ is an homomorphism. Further for each gH we have geG such that

¢(g)=gH. Hence % is homomorphic image of a solvable group. Therefore % is solvable.

SOME DEFINITIONS.

Ring. A non empty set R is called associative ring if there are two operations defined on R,
generally denoted by + and . such that for all a, b, cin R:

(1) atbisinR,

(2) a+b=Db+a,

(3) at+(b+c)=(atb)+c) (called as associative law under addition)

(4) 0eR such that 0+a=a+0=a,

]
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(5) For every ain R, there exist (-a) in R such that a+(-a)=(-a)+a=0,

(6) abisinR,

(7) a(bc)= (ab)c (called as associative law under multiplication)

(8) a(b+c)=ab+ac and (atb)c)=ac+bc (called as distributive laws)

Beside it if there exist 1 in R such that 1'a= a1=a for every a in R, then R is called associative

ring with unity.

Integral domain. An associative ring R such that ab= 0 if and only if a=0 or b=0 and ab=ba

forallaand b in R, then R is called an integral domain.

Field. Every integral domain in which every non-zero element has an inverse is called field.

Vector Space. Let F be a field. Then a non empty set V with two binary operations called
addition (+)and scalar multiplications(’) defined on it, is called vector space over F if V is abelian
group under + and for aeF, veV, av e Vsatisfies the following conditions:

(1) a(v+tw) = av+ aw for all aeF andv,winV,

(2) (a+B)v=avt+pv ,

(3) (ap)v=a(pv)

4)1v=v

Forall o, pe F and v, w belonging to V. v and w are called vectors and o, B are called

scalar.

FIELD EXTENSION

2.6.1 Definition.(Field extension). Let F be a field; the field K is called the extension of F if K contains

F or F is a subfield of K.

Example. The field C (of all complex number) is an extension of field R (of all real numbers).

]
DDE, GJUS&T, Hisar 42 |



ALGEBRA

2.6.2

2.6.3

MAL-511

Note. As it is easy to see that every extension of a field acts as a vector space  over that field,
therefore, if K is an extension of F, K is a vector space over F and dimension of K is called
degree of extension of K over F. It is denoted by [K:F]. If [K:F] is finite, then it is called finite
extension otherwise it is called infinite extension. C is a finite extension of R, while R is not

finite extension of Q (the field of rational numbers).

Theorem. Let L, K and F are fields such that L is a finite extension of K, K is a finite extension
of F, then prove that L is finite extension of F also.
Proof. Since L is a finite extension of K, therefore [L:K] =m(say) and the subset {1I,,1,,..1.,.} of L

is a basis of L over K. Similarly take [K:F]=n and {k;k,,..k,} as a basis of K over F. We will
show that the set of mn elements {Iik;1<i<mZ1<j<n} act as a basis of L over F. First we show
that every element of L is linear combination of elements of lik; over F. Let | be an arbitrary of
L. Since {1I,,1,,..1,,} is a basis of L over K, therefore,

I =k +1Ky +...+1 k3 ki €K (1)
Further using the fact that { k;,k,,..k, } is a basis of K over F, we write

ki = fiky + fioko +..+ fioky; fij € F, 1<i<ml<j<n
On putting the values of k; in (1) we get

I =1y (f10kg + TioKo 4.t Tk )+ 1o (Tokg + To0Ko +..+ ToK))
F oot L (Fraks + Tk +.o T k)
On simplification we write
I = fyalky + FyohKo + .ot fioliKy + Faloky + Fooloky -+t Folok,,
ot fol g fool Koot £ 1K :iﬁljnlfijlikj

i.e. | is linear combination of Iik; over F.

Now we will show that lk;;1<i<m1<j<n are linearly independent over F. let

Oty Ky F ool Ko+ oK + 04Ky 4 0noloKs 4.4 oo K ;
111™ 121172 1n'1™n 21'2™ 221212 2n'2 n; aij EF, WhICh after re-
+oet Ol Ky F 0ol Ko+ o K, =0

arrangement can be written as

]
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|1(Ocllk1 +(112k2 +...+(11nkn)+|2((x21k1 +(122k2 +...+OL2nkn)
+.ot b (oK + oKy 4+ o K ) = 0.

As FcK, therefore, ok, +a;.k, +...4ak, e K for 1<i<m. Since |, are linearly independent

over K, therefore, ok, +ook, +...+0y.k, =0. Now using the fact that k;;1<j<n are linearly

independent over F, we get that oy; =0. Hence lik;;1<i<m,1<j<n are linearly independent over

F and hence {l;k;;1<i<m1< j<n} is basis of L over F. As this set contains nm element, we have

J ¥

nm=[L:F]= [L:K] [K:F].

2.6.4 Corollary. If L is a finite extension of F and K is a subfield of L containing F, then [L:F]= [L:K]
[K:F] i.e.[K:F] divides [L:F].
Proof. Since it is given that [L:F] is finite, therefore, for proving above result, it is sufficient to
show that [L:K] and [K:F] are also finite. As FcK , therefore, any subset which is linearly
independent over K, is linearly independent over F also. Hence [L:K] is less then [L:F] i.e. [L:K]
is finite. As K is a subfield of L containing F, therefore K is a subspace of L over F. Hence
dimension of K as a vector space over F is less then that of L i.e. [K:F] is finite. Now by use of
Theorem 2.6.3, we get [L:F]= [L:K] [K:F] . Hence [K:F] divides [L:F].

2.7 PRIME FIELDS
2.7.1 Definition. A Field F is called prime field if it has no proper subfield. (If K is subfield of F

containing more than two elements and K# F, then K is called proper subfield of F).

Example. (i) Set of integers {0, 1, 2, ..., p-1} is a field under addition and multiplication modulo
p, p is prime number. The order of this field is p. As order of every subfield divides the order of
field, the only divisors of p are 1 and p itself. Hence above field has no proper subfield.
Therefore, this field is prime field and generally denoted as Z,.

(i1) Field of rational numbers is also prime field. Let K be a subfield of Q (field of rational

numbers) then 1eK. Let m/n be arbitrary element of Q, As m=1+1+...1, (taken m times), meK,

]
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similarly neK. But then n inverse i.e. (1/n)eK and then m/neK. i.e Q < K. Hence Q=K,

Showing that Q has no proper subfield. i.e. Q is a prime field.

2.7.2 Theorem. Prove that any prime field P is either isomorphic to Q (field of rational numbers) or Z,
(field of integers under addition and multiplication modulo p, p is prime).
Proof. Let e be the unity (multiplicative identity) of P. Define a mapping ¢ :Z—>P by
d(m)=me, meZ. It is easy to see that it is a ring homomorphism and Ker¢ is an ideal of Z. Since
Z is a principal ideal domain, therefore, there exist an integer g say such that Ker¢=<g>. Consider
the following cases:
Case (i). =0, then ¢ is one —one mapping. Hence Z= ¢(Z) < P. Clearly ¢(2Z) is integral domain.
We know that if two integral domains are isomorphic then there field of quotient are also
isomorphic. Q is the field of quotient of Z and let Q" be the field of quotients of ¢(Z), then Q= Q
Since §(Z) P, therefore, Q" < P. As P is prime field, therefore Q" = P. Hence P=Q.

*

Case (ii) If g#0, then >0, q can not be 1 because if q=1, then ¢(q)= ge =0, zero of field P,
implies that e=0, a contradiction. Hence g>1. Further if g=ab; a>1, b>1, then ¢(q)= ge
=abe=aebe=0 implies that either ae=0 or be=0. A contradiction that q is the smallest integer such
that ge =0. Hence g#ab. Therefore q is some prime number p (say). But then <p> is a maximal
ideal and Z/<p> =Zp becomes a field. Now by fundamental theorem of homomorphism. Z,=
¢(Z). As Z, is a field, therefore, ¢(Z) is also a field. But then ¢(Z)=P. Hence Z,= P.

2.8 CHECK YOUR PROGRESS

Q (i) What do you under by a Central series, Upper central series and the Lower central series of
a group? What is the length of a central series?

Q (i) Does every group have a central series?

Q (iii) What do you understand by a Nilpotent group. Is every finite group nilpotent.

Q (iv) Choose symmetric group of degree 4 i.e. S, and show that it is solvable but not nilpotent.
Q (v) Write the upper central series and lower central series of

G =1{1,-1,i,—i,j,—j, k,—k} to support the results discussed in Corollary 2.2.7.

]
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Q (vi) With the help of Theorem 2.4.5 show that S, is solvable.
Q (vii) What do you understand by Theorem 2.6.3

2.9 SUMMARY.

In first Chapter we study Central series, Nilpotent groups, Solvable groups, upper and

lower central series of a group and prime fields.

2.10 KEY WORDS

Central series, Nilpotent, Solvable, Prime fields, Extensions.

2.11 SELF ASSESMENT QUESTIONS.

(1) Prove that direct product of solvable group is again solvable.

(2) Prove that Ss is not solvable. In fact S, is not solvable for all n>4. S, is symmetric group of
degree n.

(3) Prove that every group of order pqg, p°q and pqr is solvable where p, q and r are distinct
primes

(4) Prove that a finite p group is cyclic if and only if it has exactly one composition series.

(5) Prove that every field has a subfield isomorphic to prime field.

2.12 ANSWERS TO CHECK YOUR PROGRESS

Answer Q (i) For it read Section 2. Let ( r + 1) subgroups of G forms a central series of G. If
any series which contains lesser then r + 1 subgroups never forms a central series, then r is called the
length of central series of G. For example, if G is abelian then G,(= G) o G, = {e} is a central series
obtained by using least number of subgroups of G. The length of the series is 1.

Q (ii) No. For example S5 has no central series

]
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Q (iii) Read the definition of a nilpotent group. No S5 is not nilpotent.

Q (vi) Since third commutator of S, is identity, the S, is solvable.

1 1
Q (vii) From the theorem we can say that Q (2+) can not be an extension of Q(23).
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Field Extensions-11 and Constructions

MAL-511

LEARNING OBJECTIVE. Objective of this lesson is to know more about field

extensions and about the geometrical constructions using straight edge and compass.

INTRODUCTION. Let us take a polynomial x*-2 over Q (field of rational numbers). This

polynomial has no rational root. Then it is general question ‘Does there exist a field which
contain all the roots of this polynomial’. For answering this question we need the extension of the

field Q. Therefore, in this chapter we study algebraic, transcendental and simple extensions. We

]
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In Section 3.2 we study algebraic and transcendental extensions. In Section 3.3 we
study about roots of a polynomial over the field F. Next two Sections contain conjugate elements
and simple extensions. At the last we study construction by straight edge and compass and see
the application of algebraic number in geometrical constructions.

3.2 ALGEBRAIC EXTENSION

3.2.1 Definition. An element a eK is called algebraic over F if it satisfies some non-zero polynomial

over F. i.e. if there exist elements B,.pB;,....8, In F, not all zero such that

Boa" +pa" t+...+B, =0.

3.2.2 Minimal polynomial of aeK over field F. Smallest degree polynomial in F[x] satisfied
by a is called minimal polynomial of a over field F. If the coefficient of highest degree of
minimal polynomial f(x) of a is one, then it is called minimal monic polynomial of a. It is
unique always. For it, Let x"+ox"*+..+a, and x"+Bx"*+..+p, be two minimal monic
polynomials of a. Then

a"+oa" ... +a, =0 and a" +p,a" +...+B, =0.

Equivalently (oy—p)a"*+...+a,—B, =0 i.e. a satisfies a polynomial (o; —B)x"*+...+0a, —B, of
degree less than n, a contradiction. Hence minimal monic polynomial of a is always unique.
Minimal polynomial of a is irreducible also. Note that polynomial f(x) is irreducible over F if it
can not be written as product of two non-constant polynomials in F[x]. Let if possible f(x) =
h(x)g(x), where f(x) is the minimal polynomial of a in F[x], h(x) and g(x) are non-constant
polynomials in F[x]. Then

0= f(a) =h(a) g(a).
As h(a) and g(a) are the element of K, therefore, either h(a)=0 or g(a)=0. It means either a
satisfies h(x) or g(x), polynomial of lower degree then that of degree of f(x), a contradiction.

This contradiction proves that f(x) is irreducible over F.

DDE, GJUS&T, Hisar 49 |



ALGEBRA

3.2.3

3.24

MAL-511

Definition. Field F(a). Let F be a field, then F(a) is called the smallest field containing F and a.
In other word, if K is an extension of F containing a, then intersection of all subfields of K which
contains F and a is the smallest field containing F and a. Consider the set T={

m m-1
+ Fot + Co o
%od . %4 ] Oma+ O , 04,Bj€F, nand m are any non-negative integers}. Then it is
Poa” +pga’ " +...Bnaa+Pn

easy to see that T becomes a subfield of K. Since T contains F and a and F(a) is the smallest field

containing F and a, therefore, F(a) c T. As a is in F(a) , therefore, aga™+0ya™ +....4+ 0, a+04,
and  Boa" +Ba™ +..5, a+B, cF@). Now Bga" +B@" L +...+ By 1a+Pn €F@), therefore,

inverse  of Boa" +pa" L+ .+ Brga+By also belongs to F(a). Hence

n n-1
Boad" +Ba T +...+Bnga+PBn

Here we see that F(a) is the field of quotients of F[a], where F[a] is set of all polynomials in a

eF(a) and hence T cF(a). Now by above discussion F(a)=T.

over F. Now we will study the structure of F(a), when a is algebraic over F.

Theorem. The element acK will be algebraic over F if and only if [F(a):F] is finite.
Proof. First suppose that [F(a):F]=n(say). Consider subset {1, a, ..., a"} of F(a) containing n+1
elements. Since the dimension of F(a) is n, these elements will be linearly dependent over F i.e.

we can find oy, 0y,.....a, in F, not all zero, such that oya" +o,a™* +...+0, =0. Since a satisfies a

non-zero polynomial agx" +o,x"* +....+a, in F, therefore, a is algebraic over F.

Conversely, suppose that a is algebraic over F, then by Definition 3.2.1, a satisfies some
non zero polynomial in F. Let p(x)= X" +o, X" +...+a, be the smallest degree monic polynomial
in F such that p(a)=0. i.e a"+oya"*+...+a, =0. But then a" =—o,a"* —...—a,.

Further
a™ =—gua" —...—a,a=—oy (-ua"t ... —ay)...—0a
which is again a linear combination of elements 1, a, a°,...,a"" over F. Similarly, for non-negative

integer K, a"is linear combination of elements 1, a, a%,....a"  over F.

]
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Consider  the  set  T={oa"+oa" +..+a, a+a,0; €F forl<i<n}. Let
h(@) =o,a"t +o,a"t +... 40, a+a, and t@)=pa"t+p,a" +...+pja+a, are two arbitrary
elements of T. Then T is closed under addition. Since every power of a is linear combination of
the elements 1, a, a%,...,a"" over F, therefore, h(a)t(a) T i.e. T is closed under multiplication too.
Further h(a)-t(a)eT .

Now we will show that for non-zero element u(a), h(@u(@*eT. Since u(a)=

vt +y,a" . 4y, 4a+a, %0, therefore, p(x) does not divides u(x). Since p(x) is irreducible,
therefore, gcd(p(x), u(x))=1. Now we can find two polynomials g(x) and h(x) in F[x] such that
p(X)h(x)+u(x)g(x)=1 or equivalently p(a)h(a)+u(a)g(a)=1. As p(a)=0, therefore, u(a)g(a)=1.
Hence g(a) is inverse of u(a). Now h(a)u(a)™ =h(a)g(a) is also in T. Here we have shown that T is
a subfield of K containing F and a. Hence F(a)cT. Also it can be easily seen that T is contained
in F(a). Hence T=F(a).

Now we will show that the subset {1, a, a%...,a"* } of T acts as a basis for F(a)
over F. Since every element of T is of the form o,a"* +o,a"* +...+0,, a+0,, therefore, every
element of T is linear combination of elements of the set {1, a, a°,...,a"" }. Now we have to show
that these elements are linearly independent over F. Let a,a™ +....4+a,, ;a+a, =0;0; €F . Then ‘a’
satisfies a polynomial ayx"* +a,x"* +...+0,, ;x+0,, Of degree n-1 which less then n, the degree of
minimal polynomial p(x) over F. Hence it must be a zero polynomial i.e. each o; =0. Now it is

clear that [F(a):F]=n. Hence F(a) is a finite extension of F.

Definition. If the minimal polynomial of aeK is of degree n, then ‘a’ is algebraic over F of
degree n.

As the minimal polynomial of v2 is x-2. therefore, v2 algebraic over Q of degree 2. Similarly

1 1
23,34 are algebraic over Q and are of degree 3 and 4 respectively.

Note. If acK is algebraic of degree n, then [F(a):F]=n. See the problem 3.

]
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3.2.7 Definition. An extension K of F is called algebraic extension of F if every element of K is

algebraic over F.

3.2.8 Theorem. Prove that every finite extension K of F is algebraic extension of F.
Proof. Let [K: F]=n and k is arbitrary element of k. Consider n+1 elements 1, k, k% ..., k". As

dimension of K is n over F, these elements of K are linearly dependent over F. Hence

o +agk +0L2k2 +...4+0,k™ =0with at least one of o € F is not zero. In other words, we can

say that k satisfies non zero polynomial oy +(11X+0L2X2 +..4+apX" over F, k is algebraic over

F. Hence K is algebraic extension of F.

3.2.9 Theorem. Let K be an extension of F. The elements of K which are algebraic over F form a
subfield of K.
Proof. Let S be the set of all elements of K which are algebraic over F. Let a and b are two
arbitrary elements of S. In order to show that S is a subfield of K, we will show that a+b, a-b, ab
and ab™ all are in S. Since field F(a, b) contains all elements of the form a+b, a-b, ab and ab™, it
is sufficient to show that F(a, b ) is a finite extension of F. Suppose that a is algebraic of degree n
over F and b is algebraic of degree m over F. Then by Note 3.2.6, [F(a): F]=n and [F(b): F]=m.
Further a number which is algebraic over F is also algebraic over every extension of F. Hence b
is algebraic over F(a) also and therefore, [F(a, b):F(a)] < [F(b):F]=m. By Theorem 2.6.3, [F(a,
b): F]= [F(a, b): F(a)] [F(a): F]. Therefore, by above discussion [F(a,b): F] < mn i.e. finite. Now
by Theorem 3.2.8, F(a, b) is an algebraic extension of F. Hence a+b, a-b, ab and ab™ all are

algebraic over F and hence belongs to S i.e. S is a subfield of K.

3.2.10 Corollary. If aand b in K are algebraic over F of degrees n and m respectively, then a+b, a-b,
and a/b (b+0) are algebraic over F of degree at most mn.
Proof. Given that [F(a):F]=n and [F(b):F]=m. Since a number which is algebraic over F is also

algebraic over every extension of F, therefore, b is algebraic over F(a) also and satisfies a
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polynomial of degree at most m. Hence [F(a, b):F(a)] < [F(b):F]=m. By Theorem 2.6.3, [F(a,
b):F]= [F(a, b):F(a)] [F(a):F]. Therefore, by above discussion [F(a, b): F] < mn i.e. finite. Now by
Theorem 3.2.8, F(a, b) is an algebraic extension of F. Hence a+b, a-b, ab and ab™ all are algebraic
over F. Since [F(a, b): F] < mn, every element of F(a, b) satisfies a polynomial of degree at most
mn over F. Since a+b, a-b, ab and ab™ all are in F(a, b), therefore, there minimal polynomial is of

degree at most mn and hence are algebraic of degree at most mn over F.

Note. F(a, b) is the field obtained by adjoining b to F(a) or by adjoining a to F(b). Similarly we
can obtain F(&,ay,...,a,) by adjoining a; to F, then a, to F(a;), as to F(ai1, az) and so on and at

last adjoining a, to F(ay, az,..., an-1).

3.2.12 Theorem. If L is an algebraic extension of K and K is an algebraic extension of F, then L is an

algebraic extension of F.
Proof. Let u be an arbitrary element of field L. We will show that u is algebraic over F. Asu is

algebraic over K, therefore, u satisfies the polynomial og+oaqX+...+X", o; K. Since K is
algebraic extension of F, therefore, each «; is also algebraic over F. As o is algebraic over F,
therefore, [F(og): F] is finite. Since oy is algebraic over F, therefore, it is algebraic over F(o.g)
also. Hence [F(ag)(aq): F(ag)] = [F(og,aq): F(ag)] is finite extension. Similarly we can see
that for 0<i<n-1, [F(ayg,04,..,0i): F(ag,a1,..,0i_1)] is finite. Now by Theorem 2.6.3,
[F(ag,0aq,...an1): F1= [F(a, 04,...an-1) : F(ap, 04,.-,0n-2)]

[F(ap,04,..an-2): F(ag, ag,...0n-3)]

....... [F(og,01): F(ag)][F(ap): F]

is finite because for each i, [F(ag,0q,..,0i): F(ag,04,..,ai—1)]is finite. We also see that the

polynomial oig+oyX+...+X" has all its coefficients in the field F(og,0y,..,0,_1) , therefore, u
is algebraic over F(opg,04,..,0q-1)also. Hence [F(og,0q,..,an-1)U): F(cg,0y,..,00n-1)]is

finite. Now
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[F(ap,04,-..00-1)U): F]
= [F(ag,04,..,0n-)U): F(ag,04,..,an-1)] [F(og, 01,..,0n-1) : F] is also finite. But
then F(ayg,0y,..,0n_1,U) is algebraic extension of F. As u e F(ag,0y,..,0n-1,U) , therefore, u is

algebraic over F. Hence L is algebraic extension of F.

3.2.13 Definition. A complex number is said to be algebraic number if it is algebraic over the field of

3.2.14

rational numbers. Complex number which is not algebraic is called transcendental.
Example.(i) Show that V2+35 is algebraic over Q of degree 6.
Solution. Let a.=~+2+35. Then a—+/2=35. Cubing on both sides we get

o3 —30242 +6022 - 242 =5
Then

ol —5=\/§(3oc2 +602 —2). Squaring on both sides we get
o8 —1003 +25= 2(3(x2 +60.2 —2)2 i.e. o satisfies a polynomial

x8 —1OX3+25—2(3x2+6x2—2)2 of degree six over Q. More over it is the smallest degree

polynomial satisfied by o.. Hence atis algebraic over Q and is of degree 6.

Example (i) Show that Q(v2 +3/5) = Q(v/2, ¥/5).. Then show that [Q(v/2, 3/5): Q] =6.
Solution. First we will show that Q(W2+35)cQ(/2,35). Since v2 eQ(2,%5) and
¥5cQ(v2, 35), therefore, 2 + I5eQ(2,36). But Q(2+3/6) is the smallest field
containing v2 + 35 . Hence Q(V2+35) cQ(/2, 5).

On the other hand a.=+2 + 35 ¢ Q(2+35), then o2 =2+ 325+2,2.35
also belongs to Q(+/2+3/5). Equivalently,

o —2=Y5(35+2+2) =35( a++/2) (1)

Cubing (1) on both sides, we get
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(02 —2)3 =5( 0++/2)3 =5(c® +30°+/2 + 60+ 24/2)
=502 +300.+5(302 +2)/2 .
= (02 -2)% —503—300.=5(302 +2}v2 € QW2 +35). Since o e Q(2+35), therefore,
5302 +2) e Q(W2 +35). But then (302 +2) e Q(v2+3%/5). Hence
(3% +2) H(30® +21V2 =42 eQ(/2+35)
and hence
a2 =42 +¥5-2 =35 e QW2 +¥5)
since V2 , 35 € Q(2 +35), therefore, Q(+/2, ¥5) Q2+ ¥5). Hence
Q(W2, ¥5)=Q(2+35).
As 2 satisfies the polynomial x2—2 , therefore, ~/2 is algebraic of degree over Q. Hence
[Q(v2):Q]=2. The general element of the field Q(v2)=a+bv2;a,beQ.
Clearly, 35#a+by2. Because, if ¥5=a+bv2, then I5-bv2=a. As left
hand side is an irrational while right hand side is rational number, a contradiction. Since /5
satisfies the polynomial X2 —5 over Q, which is irreducible over Q, therefore, [Q/5): Q]=3.
As 35 is algebraic over Q, therefore, it is algebraic over Q(+/2). But then
[Q(W2,35):Q(v2)]<3. Because  352Q(2), [Q(W2, 35):Q(/2)]#1. Hence
[QW2, ¥5):Q(v2)]=3 and hence [Q(v2, ¥5):Q1=[Q(v2, ¥5): Q(v2][Q('2): Q] =3.2=6.
since Q(W2+¥5)=Q(/2, ¥5), therefore, [Q(+2 +¥/5): Q] =6.

Example. Let g(x) be a polynomial with integer coefficients, prove that if p is a prime number

i
then for i>p, %((S(—)%l) is a polynomial with integer coefficients each of which is divisible
X —l1).

by p.

]
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Solution. As we know that for given integer nand m, Np__yNc_where Np_ is the number of

permutations of n distinct things taking m at a time and nc,. is the number of combination of n

n
different things taking m at a time. Further, Np_ and nc.. both are integers, we get that %

_ n(n-1)...0—m+1)
ml

is an integer. In other words, product of m consective positive integers is

always divisible by m!. As d—l.( X" ) = k(k=D...k—i+1) X ; if k>i and zero otherwise.
dx' (p-D! (p-1)!
By above discussion k(k—1)...(k—i+1) is the product of i consective integers hecce divisible by
k(k=1)...k—i+1)
(-t

il. But i>p, hence p! also divides k(k—1)....k—i+1) and hence p divides

i
Now by above discussion % ((g(—xl))l) is a polynomial with integer coefficients each of which is
X —1):

divisible by p.

Theorem. Prove that number e is transcendental.

Proof. Suppose f(x) is a polynomial of degree r with real coefficient. Let
F(x):f(x)+f1(x)+...fr(x);fk(x) is the k™ derivative of f(x) with respect to x. Consider

e F(x). Then

% (e *F(x))=—e*f(X).

As e_XF(x) is continuously differentiable singled valued function in the interval [0, k] for
positive integer k, by mean value theorem we get
e “F(k)-e°F(0) _ d
k-0 dx
On simplification, we get,

(€7 F(X))x=p,k ;0<B <1

F(k) —eXF(0) = —ke 9KF (9, k). We write these out explicitly:

]
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F(1)—eF(0) =—e & f (0k) =¢4
F(2) —e?F(0) =—26 21 92)f (0.k) =&,

F(n)—e"F(0) =—ne &On)f (0, n) =¢,
Suppose now that e is an algebraic number ; then it satisfies some relation of the form
cne” +Cnge" L.+ cie+Co =0; Co, Ci....cn are integers and co>0.
Now
C F _ — —(1—91) —
1(F(D) —eF0)=—e f(61K) =g
+Co(F(2) —e2F(0) =—262192)f (0,k) = ¢,
+...
+ ¢ (F(N) —e"F(0) =—ne L On)f(0,n) = ¢, Equi
n = nN) =&p. Equivalently
CIF(D) +CoF(2) +...4+CHF(N) —F(0) (cre™ +Cp_g€" 2 +..4+C1€) = Creq +...+Cren Since
cne” +cnge" L. +ce=—cp,
therefore, above equation reduces to
CoF(0) +1F() +CcoF(2) +...+chF(n) =C1&1 +...4+Cnén *
Since the equation (*) holds for all polynomials f(x), choose

f(x)= ﬁxp_l(l—x)p(Z—x)p...(n—x)p; p is a prime number so that p > n and p > co.

When expand, f(x) is a polynomial of the form

(n!)p p-1 aoxp alxp+1 n
T e AN TR )

where ay, aj, ..., are integers.

Consider the following cases:

(1) when i>p.
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By Example 3.2.15, fi(x) is a polynomial whose coefficients are all multiple of p. Thus for any
integer j, fi(j) is a multiple of p.
(i) i<p-1. Since f(x) has roots 1, 2, ..., n, each with multiplicity p and zero is root of f(x) with
multiplicity p-1. therefore, fi(x) is zero for x=0, 1,2, ..., n.
(iii) i=p-1. Since f(x) has roots 1, 2, ..., n, each with multiplicity p and zero is root of f(x) with
multiplicity p-1, therefore, P(x) is zero for x= 1, 2, ..., n and by (**), fP71(0) = (n!)P. Since,
p > n, therefore, fP2(0) is not divisible by p .

As F(x):f(x)+f1(x)+...fr(x), therefore, F(j):f(j)+f1(j)+...fr(j). From the above
discussion we conclude that F(j), 1< j<n s a multiple of p. Further by case (iii) ,fp_l(O) is not

divisible by p and by case (i) and (ii) fi(O) is divisible by p, resulting that F(0) is not divisible by
p. Since p > co, therefore, coF(0)+c1F()+CcoF(2)+...+c,F(n), left hand side of (*) is not

divisible by p.
—el@9) 1 _io VP (—ie: )P (i0: )P L
Since gj = e V{A-16)"...0~16;)7(16)) I;O<E)i <1
(p-D!
e"nP(mP .
Thus | &; |£W, which tends to zero as p—oo. Therefore, we choose p such a large prime

so that | &1 +...+Cnen [<1. But coF(0) +...+c,F(n) is an integer, therefore, Cie1 +...+Cnep is

an integer. Hence Cqg1 +...+Cn€4=0. But then p divides €& +...+Cp€p, a contradiction. Hence

contradiction to our assumption that e is algebraic. Therefore, e is transcendental.

m
Example. For m>0 and n are integers, prove that e " is transcendental.

Proof. If a number b is algebraic then b¥ is also algebraic. Since b is algebraic, therefore, b

satisfies polynomial

CX" + X"+ X+ Co.

]
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1
But then b™M for m>0, satisfies the polynomial c,X™ +cp XD 4+ ¢;x™ +cq. Hence if

1
b is algebraic then bM is also algebraic.

m
Let us suppose that t=en is algebraic, then t" =e™Mis also algebraic. As t"is

n n
algebraic, therefore, by above discussion, t™ is also algebraic. But tM =e, therefore, e is also

m
algebraic, a contradiction. Hence a contradiction to our assumption that en is algebraic and

m
hence e N is transcendental.

ROOTS OF A POLYNOMIAL

Definition. Let K be an extension of field F, then acK is called root of f(x) eF[x] if f(a)=0.

Definition. The element a €K is a root of f(x) eF[x] of multiplicity m if (x-a)"| f(x) and

(x—a)™L | f(x)i.e. (x-a)™ divides f(x) and (x —a)™" does not divides (x).

Note. (i) Let K be an extension of field F, If f(x) eF[x], then any element a eK , f(x)=(x-
a)g(x)+f(a), where g(x) eK[x] and degree of g(x) = degree of f(x)-1.

(i) If K is an extension of field F, a eK is a root of f(x) eF[x], then in K[x], (x-a)[f(x).

(iii) A polynomial of degree n over a field can have at most n roots in any extension field

(iv) If p(x) is an irreducible polynomial in F[x] of degree n>1, then there exist an extension E of
F in which p(x) has a root. Further, if f(x) eF[x], then there exist an extension E of F in which
f(x) has a root. More over [E:F] < degree of f(x).

(v) If f(x) is a polynomial of degree n (>1) over a field F, then there exists an extension E of F
which contains all the root of f(x). The degree of extension of this field over F is at most n! i.e.

[E:F] <n!.

]
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(vi) Let f(x) = Cnxn +Cn_1xn_1 +...4+C1X+Cq be a polynomial with integer coefficients, then f(x)

will be irreducible over the field of rational numbers Q if we can find a prime number p such

that p|cpg..... plcy, PlCg. PICy and p? | Co.
(vii) Let k be a positive integer, then polynomial f(x) is irreducible over the field of rational

numbers if and only if f(x+k) or f(x-k) is irreducible. These results are easy to prove.

Definition. If f(x) eF[x], a finite extension E of F is said to be splitting field over F for f(x)
if over E, but not over any proper subfield of E, f(x) can be factored as a product of linear
factors. Since any two splitting fields over F of f(x) are isomorphic, therefore, splitting field of

f(x) is unique.

Example (i). Consider the polynomial f(x)= x3-2 over the field of rational numbers. The roots of

1 1 1
the polynomials are 23, 23, 23 w2 ; @ is cube root of unity and is a complex number. As the

1 1
field Q(23) is the subset of real numbers, it does not contain . As [Q(23):Q]=3, the degree
of spitting field is larger than 3. Also by Note 3.6.3(v), the degree if splitting field is at most 6.
Now we can see that if E is the splitting field over F of x*-2, then [E: F]=6.

(i) If F(x)= x*+ x2+1, then f(x)= x* 2 x%+1- x%= (-x+1)( X°+x+1). As @ and @2 are the root of

the polynomial x*+x+1, therefore, roots of polynomial ~ (x*>-x+1) are - ® and -®?. Since all the

roots are contained in the field Q( ®). Hence the splitting field is Q( ®). More over [Q( ®): Q]=2.

(iii) Consider the polynomial x®++1. As x°-1= (x3-1)(x®+x*+1). Choose  as primitive 9" root

of unity. Then 1, , 032, 033, 034, 035, 0)6, 037, o are the roots of the polynomial x°-1.

Further, 1, oas, ®? are the roots of the polynomial x3-1. Hence ®, 0)2, 0)4, 035, 0)7, ? are the

roots of the polynomial (x®+x®+1). Since all these roots are contained in the field Q( ®), Q(®) is

]
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the splitting field of the polynomial x®+x+1. If f(x)= x*+x°+1, then f(x+1)= (x+1)%+(x+1)*+1=
(C+6X°+15X +20)3+15x % +6x+1)+  (C+3x%*+3x  +1) +1= xP+6x°+15x*+21x°+18x*+9x+3. By
Eisenstein Criterion of irreducible, the polynomial x®+x*+1 is irreducible over Q. Hence [Q( ®):

QJ=6.

(iv) Show that algebraic extension may or may not be finite extension.

Solution. Algebraic extension may be finite extension. Consider an extension Q(\/E) of Q.
Since every element of Q(\/E) is of the form x=a+bv/2;a, beQ, therefore (x—a)2 =2b%ie.
every element of Q(\/i) satisfies a polynomial of degree at most 2. Hence every element of

Q(+/2) is algebraic over Q, therefore, Q(+/2) is algebraic extension of Q. More over [ Q(~/2)
:Q]=2.i.e. it is a finite extension also.

Algebraic extension may not be finite extension. Consider the set S of all complex numbers
which are algebraic over Q. Clearly it is an algebraic extension of Q. Let if possible, [S: Q]=n
(some finite number ). Now consider the polynomial x"+2. It is irreducible over Q. (By
Eisenstein criterion of irreducibility) If a complex number ‘a’ is a root of x"™+2, then [Q(a): Q]=
n+1. Further by our choice a€S, therefore, Q(a)cS. But then we have that dimension of S as a
vector space over Q is less then dimension of subspace Q(a) of S over Q, a contradiction and
hence a contradiction to the assumption that S is a finite extension of Q. It supports the result that

every algebraic extension need not be finite extension.

SIMPLE EXTENSION

Definition. An extension K of F is called simple extension if there exist an ain K such that
K=F().

Example. Let K be an extension of F such that [K:F]=p , p is prime numer then K is a simple
extension.
Solution. Let a.€ K. As K is finite extension of F, aLis algebraic over F. Consider F(a.). Since,

p >1, agF. But then F(a) is a subfield of K containing F. Hence F( ) is the subspace of the

]
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field K over F and hence dimension of F(a) as a vector space divides the dimension of K as a
vector space over F i.e. [F(a):F] divides [K:F]. Because [F(a): F]>1, the only possible
condition is that [F( o): F]=p. But then K=F( o). Hence K is a simple extension of F.

CONJUGATE ELEMENTS

Definition. Let K be an extension of the field F. Elements o and 3 of K are said to be conjugate
over F if there exist an isomorphism o: F(or) — F(3) such that o(o) = and o(8)=6 V deF.
In other words, G acts as identity mapping on F and take o to 3.

Theorem. Let K be an extension of the field F and the elements o and B of K are algebraic
over F. Then o and B are said to be conjugate over F if and only if they have the same minimal

polynomial.

Proof. Let wus suppose that o and [ are conjugate over F. Further let
p(x)=x"+c, X" D+ +cx+cy  be the minimal polynomial of c.over F. Then
0=p(a) =a" +Cn_10c(n_1) +...+Cjot+Cq . Now

0=0(0)=c(a" + Cn_loc(n_l) +...+Ca+Cp)

= 0=0(a") +0(ch_1)o(@" D) +...+ 5(c)s(0) + o(Co)
Using the fact that o(a)=p and o(8)=6 VdeF, above equation reduces to
0=P"+c, " +...4+cB+cq ie. B satisfies the polynomial p(x). Let r(x) be the minimal
monic polynomial of B. But then r(x)|p(x) where p(x) is irreducible polynomial over F. Since

r(x) and p(x) both are monic irreducible polynomials over F, we have r(x)=p(x). Hence o and 3

have the same minimal polynomial.

Conversely, suppose that they have the same minimal polynomial p(x) of degree
n. Then by Theorem 3.5.4, [F(a):F]= [F(B):F]=n. Now 1, o, a2, ...o" L is a basis of F(a)
over F and the general element of F( QL) is ag+a; oL +a, o+ ...Fan oc”_l; a belongs to F. Similarly

1, B, [32, Bn_l is a basis of F(3) over F and the general element of F(B) is ap+ai 3 +az BZ+

]
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... tay [3”‘1. Define a mapping o:F(a) > F(B) by

o(ag+aqo+...4+an g™ ) =ag+aB+...+an_B" . Since a are unique, therefore, & is well

defined. Now we will show that & is an isomorphism. It is easy to see that ¢ is one-one and

onto mapping. Only thing is to show that it is a ring homomorphism. Let ag +a1B+...+an_1Bn_1
and bg+bB+...+ bn_an—l be the two arbitrary element of F(a). Then

o((@g +ago+...+an_10" ) + (bg + bra+..+ by 0" ) =
o((ag +bg) + (a1 +b)a+..4(@n_1 +bp_1)a" )

=(ag +bo)+ (@1 +by)B+...+(@n-1+by )"

=ag+aB+..4+an B T +bg+bB+..+by BT

=c(ag +ajo+...+an_10" ) +o(bg +byo+...4+bp_g0" ).

n-1 n-1
Since  ag+aja+..+a, 0"t =3 ajo!,  bg+bja+..+by 0" =3 b Let

n-1 i n-1 i n-1 i n-1 i n-1 i n-1 i . .
(X ajo’)(X bjo')= X cja ,then o( ¥ aja’ )( T bja')= X cijB’ . Consider the polynomial
= = i=0 = i=0 i=0
n-1 i n-1 i n-1 i
g(x) =( X ajx')( = bjx')— X ¢jX *)
i=0 i=0 1=0
in F[x],
n-1 i n-1 i n-1 i . .
then g(a)=(X ajo’)( X bjo') — X cjo' =0and then p(x)|g(x) i.e. g(x)=p(x)h(x). Since
i=0 i=0 i=0

p(B) =0, therefore, g(B) =p(B)h(B)=0.

n1 . n1 n-1 .
Now by (*) (X ajp')(= bip')= X cip'i.e.
i=0 i=0 i=0

.|
63 |
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G(Z a,a)(z b,cx') (Z a,B )(Z bB) Hence < is an isomorphism. More over if we
i= i=0 i=0

choose a;=1 and a;=0 for all other i, then o(o))=pand if we choose all a=0 for i>0, then

o(ap) =ag i.e o(8) =8 V & F showing that G is a non-zero isomorphism. It proves the result.

Theorem. Let K be an extension of the field F and the elements o and B of K are
transcendental over F. Then o and 3 are conjugate over F.

Proof. Consider the polynomial ring F[x]. Let F[ a] be the sub-ring of K generated by F and o
(similarly F[B] is sub-ring of K generated by F and ). Then the mapping o:Hx]—Hao]

n R n :
defined by o(Zcix')=Xcja';cieF is an onto ring homomorphism. Further if
i=1 i=1

G(ZC x) G(Zd x) then Zc,cx = Zd,oc This further implies that Z(CI di)oci =0ie. a
i=1 i=1

is algebraic over F, a contradiction that ais transcendental. Hence Cj=d; and hence
LIS BL : o :

Y Cix' = Xd;jX i.e. G isone-one. Hence Gis an isomorphism. Thus

i=1 i=1

FHx]=Ha]. Now & can be extended to a unique isomorphism 0:F(x) — F(a), defined by

o109, _h()
90’ 9@’

HoJ. Now it is clear that 6(x)=c. and 6(a) =a VaeF. Similarly, we have an isomorphism

where F(x) is the field of quotient of F[x] and F(«) is the field of quotient of

¢@:F(X) > F(B) such that ¢(x)=p and ¢(a)=a VaeF. Consider the mapping (pe—l. Then
(pe_l:F(a)—>F(B) such that (pe—l(a)z B. Since ¢ and 071 both are isomorphism, therefore,

(pe_lis also an isomorphism. Hence o and f3 are conjugate over F.

CONSTRUCTION WITH STRAIGHT EDGE AND COMPASS

]
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In school class construction, by the use of scale and compass we can draw any line of
given length, circle of given radius, and can construct right angle and sixty degree angle. Here we

see that these constructions has a relation with algebraic extension.

Definition. A real number o is said to be constructible by straight edge and compass if by the
use of straight edge and compass we can construct a line segment of length o. Here by straight

edge mean a fundamental unit length.

Note. If a real number o is constructible by straight edge and compass we will use to say that o

is constructible.

Theorem. Let F be a field. Then a point o is constructible from F if and only if we can find a
finite number of real numbers Ay, A2 ,..., Ay such that [F(A1):F]= 1 or 2; [F(A1, A2,s..., Ap):
F(A1, X2,..., Ai.1)]= 1 or 2 for i=1, 2,...,n; and such that « lies in the plane of F(Ay, A2,..., An).

Proof. By a plane of F, we mean set of all points (X, y), where x and y are from F and a real
number o is constructible from F if it is point of intersection of lines and circles in the plane of F
or it is point of intersection of lines and circles in the plane of some extension of F. If we take
two points (a;, b1) and (a2, by) in the plane of F then equation of line passing through these points
is (bi1-bo)x+(az-a1)y +(a1b2)- a,b;=0 which is definitely of the form ax+by+c =0 ; a, b, ceF.
Similarly we can see that equation of circle in the plane of F is x? + y? + ax + by + ¢=0. Since the

point of intersection of two lines in the plane of F always in F, point of intersection of line and
circles , circle with circle either lies in F or lies in the plane of F(ﬂ) for some positive y in F.
Thus line and circles of F leads to a point in F or in quadratic extension of F.

On similar steps as discussed above, we get that lines and circles in F(\/y?) leads to a

point in F(\/y_l) or in quadratic extension of F(\/y_,\/z), for some positive v, in F(\/y_l).

Continuing in  this way we get a sequence of extensions such that
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[F(\/y_,...,\/_i):F(\/y_,...,\/E)]: 1 or 2 for each i, positive real number yie F(\/y_,...,\/E)
and ace F(JY1,1/¥2,-nfTn).

Now by above discussion, if o is constructible then we can find a finite number of real
numbers A1, A2,..., Aq Such that [F(A1):F]=1 or 2; [F(A1, A2,..., Ai): F(A1, A2,..., Ai1)]= 1 or 2 for
i=1,2,....,nand aeF(A1, A2,..., An).

Conversely if yeF is such that ﬂ is a real number then vy is a point of intersection of

lines and circles in the plane of F. Now a.eF(Ly, A2,..., Ap) , therefore, a is a point of intersection
of lines and circles in the plane of F(L1, A2 ,..., As-1). Hence a is constructible. In other words a

real number o is constructible from F if and only if we can find real numbers A, A2 ,..., A, Such

that 7& IS F,k% eF(\, Ao, Aj_1) fori=1, 2, ..., n such that aeF(k1, X2, ..., An).

Note. Since it quite easy to see that every rational number is constructible, therefore, by above
theorem a real number a is constructible, we start from Fo, the field of rational numbers and get

an extension of Fq in which a lies.

Theorem. A real number o is constructible from Fy if and only if we can find real numbers A1, A,

,..., A Such that K:ZL IS FO,X% eRy(M, Ao, Ajq) fori=1,2, ..., n such that aeFo(A1, A2,..., An).
Proof. Replace F by Fgin the proof of Theorem 3.7.3.

Corollary. If a is constructible, then a lies in some extension F of Fy of degree a power of 2.

Proof. As we know that real number o is constructible if and only if we can find a finite number
of real numbers A1, A2 ,..., Ay such that 7& ehy, ?ﬁ eF(A\q, Ap,Aj_1) for i=1, 2, ..., n such that
aeF(hi, Az,..., ho). But then [Fo(hy, Aa,..., Ai): Fo(re, Az,..., Ai)]= 1 or 2 =2% | a=0 or 1, for
i=1, 2,....n. Since  [Fo(rs, A2, , )i Fol= [Fois, A2 ..y An): Foht, A2 se.s Ant)] [FoOhay Rz ...,

Anr): Fo(ha, A2,evs An2)]... [Fo(h1): Fol= 2%n+an1%-+31 s 4 power of 2.

]
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Corollary. If a real number o satisfies an irreducible polynomial over the field of rational
numbers of degree k, and if k is not a power of 2, then o is not constructible.

Proof. Since a real number o is constructible if and only if it lies in an extension K of F, a
power of 2. If o satisfies an irreducible polynomial of degree k then [Fo(o):F]=k. Since k is odd,

it can not be a power of 2 and hence it is not constructible.

Theorem. Prove that 60° angle is constructible.

Proof. As we know that if an angle 6 is constructible if and only if cos6 is constructible. Let
6=60° , then cosd=cos60° :%: cose-%:o I.e. cosO satisfies an irreducible polynomial of

degree 1=2°, a power of 2, over the field of rationals. Hence cosf is constructible and hence

0=60° is constructible.

Theorem. Prove that it is impossible, by straight edge and compass alone, to trisect 60°
angle.
Proof. By the trisection of 60° angle by straight edge and compass alone mean we have to

construct 20°. As we know that 20° is constructible iff cos20° is constructible. Let 0=20°. Then
30=60° and cos30=cos60°. But then 4cos39-30059:% or 8c0s°0-6c0s0-1=0 i.e. cosO satisfies the

polynomial 8x3-6x-1. Let f(x)= 8x>-6x-1, then f(x-1)= 8(x-1)*-(6x-1)-1= 8x*-24x?+18x-3. Since 3
is a prime number which divides every coefficient, except the leading coefficient of the
polynomial f(x-1) and 32 does not divide constant coefficient of the polynomial f(x-1). Then by
Eisenstein criterion of irreducibility, f(x-1) is an irreducible polynomial over field of rational
numbers. But then f(x) is also irreducible over field of rational numbers. Therefore,
[Q(c0s6):Q]=3 which is not a power of 2. Hence cos0 is not constructible. Equivalently 6 is not

constructible. Hence we can not trisect 60° by straight edge and compass alone.

3.6.10 Theorem. By straight edge and compass it is impossible to duplicate the cube.

]
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Proof. As by duplicate of a cube means construction of cube whose volume is double the volume
of given cube. Let us consider the cube of unit length side. Then the volume of cube is 1. For
duplicating this cube, we have to construct a cube of volume 2 units i.e. we have to construct a
number a such that o®=2. Since 2 is a prime number which divides every coefficient, except the
leading coefficient of the polynomial x*-2 and 22 does not divide constant coefficient of the
polynomial x3-2. Then by Eisenstein Criterion of irreducibility, x*-2 is an irreducible polynomial

over field of rational numbers. Hence [Q(a):Q]=3 i.e. a is not constructible. It proves the result.

Theorem. Prove that it is impossible to construct a regular septagon.

. : . 2
Proof. Since for construction of regular septagon we need the construction of an angle 7n . We

. 2 . . . .
will show that 6=7n is not constructible. Equivalently we have to show that c0SO is not

constructible. Since

70 =21 = 40 =21-30 => cos 40 =cos(2n-30)=> cos 40 = cos30

= 205”20-1 =4 c0s°0- 3¢0s0

= 2(2c0s%0-1)? -1=4 c0s°0- 3cosO

= 8c0s"0 +1-8¢0s°0 =4 c0s°0- 3¢0s0

=8c0s*0 - 4 c0s°0- 8c0s%0+3c0s0+1=0

—(cos 0-1)(8cos’0 +4 cos?0- 4c0sH-1)=0
Since for given 6, cosd = 1, therefore, cos6-10. Hence cos@ satisfies the polynomial f(x)=8x>
+4x%- 4x-1. Since f(x+1)=8(x+1)> +4(x+1)%- 4(x+1)-1 = 8(x*+3x*+3x+1)+4(x*+2x+1)-4(x+1)-1=
8Xx+28x%+28X+7.
Since 7 is a prime number which divides every coefficient, except the leading coefficient of the
polynomial f(x+1) and 72 does not divide constant coefficient of the polynomial f(x+1). Then by
Eisenstein Criterion of irreducibility, f(x+1) is an irreducible polynomial over field of rational
numbers. But then f(x) is also irreducible over field of rational numbers. By above discussion we
get that cosO satisfies an irreducible polynomial of degree three. Hence cos0 is not constructible.

It proves the result.

]
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CHECK YOUR PROGRESS

1
Q (i) Write the general element of Q(25) over Q

1 1
Q(ii) Write the degree of extension of Q(25, 24) over Q

Q(iii) Is regular octagon constructible?

SUMMARY.

Algebraic, transcendental, simple extensions, conjugate element, roots of a polynomial over the

field F and application of algebra in geometrical constructions are studied in this Chapter.

KEY WORDS.

Algebraic, Transcendental, Root, Simple, Conjugate, Construction, Straight edge, Compass.

SELF ASSESMENT QUESTIONS.

(1) Prove that sin m is constructible.

(2) Prove that regular pentagon is constructible.

(3) If acK is algebraic of degree n, then [F(a):F]=n.
(4) Prove that regular 9-gon is not constructible.

(5) Prove that it is possible to trisect 72° by straight edge and compass.

ANSWERS TO CHECK YOUR PROBLEM

Answer to Q(i) For it read the proof of the Theorem 3.2.4, you will find that the general element

1 1
of Q(25) isay+ aja+ aa? + aza® + aza*, where a = 25.
Answer to Q(ii) With the help of corollary 3.2.10, you will see that the answer is 20.
Anwer to Q(iii) As the exterior angle of regular octagon is 45, which is constructible, therefore,

regular octagon is constructible.

]
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Lesson: Field Extensions-I11

Structure:
4.0 Learning Objective

4.1 Introduction

4.2 Algebraically closed field

4.3 More about roots of a polynomial
4.4 Separable extensions

4.5 Some definitions

4.6 Symmetric rational functions

4.7 Normal extension

4.8 Check Your Progress

4.9 Summary

4.10 Key words

4.11 Self-Assessment Test

4.12 Answers to check your progress

4.13 References/ Suggested readings

4.0 LEARNING OBJECTIVE. Objective of this lesson is to study about normal and

separable extension.

4.1 INTRODUCTION. In previous Chapter we came to know about some extension and

splitting fields of polynomial f(x) in F[x] over F. There are many fields which have no proper
algebraic extension; we call such field as algebraically closed fields which are studied in Section

4.2. Separable extensions are studied in Section 4.4. In Section 4.6, we study about rational
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symmetric functions. Now there is an interesting point “Does there exist an extension K of F such
that if it has a root of an irreducible polynomial p(x) eF[x], then it contains all the root of that

polynomial, We call such an extension as normal extension of F which are studied in Section 4.7.

ALGEBRAICALLY CLOSED FIELD.

Definition (Algebraically closed Field). Field F is called algebraically closed if it has no proper

algebraic extension. i.e. if K is an algebraic extension of F then K=F.

Theorem. Let F be a field. Then the following conditions are equivalents:

(i) Fis algebraically closed.

(if) Every non constant irreducible polynomial in F[x] is of degree 1.

(iii) Every polynomial of positive degree in F[x] can be written as the product of linear factors in
FIx].

(iv) Every polynomial of positive degree in F[x] has at least one root in F.

Proof. (i)=(ii)

Let F be algebraically closed and let f(x) is an irreducible polynomial of degree n
in F[x]. Since f(x) is irreducible, there exist an extension K of F such that [K:F]=n, containing at
least one root of f(x). Since K is a finite extension of F, therefore, K is algebraic extension of F.
But F is algebraically closed, therefore, K=F. Hence n=1 and hence every irreducible polynomial
in F[x] is of degree 1.

(in=(iii)

Let f(x) be a non constant polynomial in F[x]. Then by unique factorization
theorem on polynomials, polynomial f(x) can be written as the product of irreducible polynomials
over F. By (ii), every irreducible polynomial is of degree 1, therefore, every polynomial over F
can be written as the product of linear factor in F[x].

(ii=(iv)
Let f(x) be a polynomial of degree n(>1) over F. Then by (iii), f(x)=a(x-a1)

(x-a2)... (x-an); aieF. Since a’s are roots of f(x) which all lies in F, proves (iv).

(iv)=(i)

]
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Let K be an algebraic extension of F and k be an arbitrary element of K. let f(x) be
the minimal polynomial of k over F. By (iv), f(x) has at least one root in F. let « be that root.
Then f(x)=(x-a)g(x), where g(x) is in F[x]. On applying the same process on g(x) and continuing
in this way we get every root of f(x) lies in F. Hence K lies in F, therefore, KcF, but then K=F.

Hence F is algebraically closed.

4.2.3 Theorem. Algebraically closed fields can not be finite.
Proof. Let F be an algebraically closed field. If possible it has finite number of element say a;,
a,..., an . Consider the polynomial (x-a;)(X- a2)...(x-a,)+1. This is a polynomial in F[x] which
has no root in F, a contradiction that F is algebraically closed. This contradiction proves that F

can not be finite.

Example. The field C (field of complex numbers) is algebraically closed.

4.3 MORE ABOUT ROQOTS.
431 Definition. Let f(X)=0gXx" +...4+0,_1X+0, be a polynomial in F[x], then the derivative of
f(x), written as f'(x) is the polynomial naox”_1+....+ocn_1 in F[x].

Example. Consider the polynomial ocox3+oc10ver the field F with characteristic 3, then the

derivative of this polynomial is zero over F.

4.3.2 Theorem. For f(x) and g(x) in F[x] and any o in F,
(i) (F)+909) =F () +g (%)
(ii) (af (x)) =of (x)
(iii) (FO9(9) =F (g0 +F(x)g (x)

Proof. These results can easily be proved by use of Definition 4.3.1.
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4.3.3 Theorem. The polynomial f(x) in F[x] has a multiple root if and only if f(x) and f'(x) have non

trivial common factor.
Proof. Since we know that if f(x) and g(x) in F[x] have a non trivial common factor in some
extension K of F, then they have a non trivial common factor in F[x]. So, without loss of

generality suppose that all the roots of f(x) lies in F. Let a be a root of f(x) multiplicity m>1, then
f(x) = (x—a)™g(x). But then f (x)=m(x—o)™Lg(x)+(x—-)Mg (X) = (x—o)t(X)i.e. (x-a)
is a common factor of f(x) and f ().

Conversely  suppose that f(x) has no  multiple root, then

f(X) =(x—og)(X—0)...k—aty) ; degree of f(x)=m. Then

' m R — -
f (X)= X(X—0ay)..{X—0)...X—ay), where  denote that term is omitted. From here we see

' m J—
that no q; is a root of the polynomial f (X)= X (X—o0y)..(X—a;)...X—ay), therefore, they
i=1

have no non trivial factor in common. In other words, f(x) and f (X) have a non trivial common

factor if and only if f(x) has multiple root.

4.3.4 Corollary. If f(x) be an irreducible polynomial in F[x], then
(i) If the characteristic of F is zero, then f(x) has no multiple roots
(ii) If the characteristic of F is p=0, f(x) has a multiple root if it of the form f(x)= g(x").

Proof. (i)Since f(x) is irreducible, its only factors are 1 and f(x) in F[x]. Let f(x) has multiple

roots, then f(x) and f'(x) has a nontrivial common factor. It mean f(x)| f'(x). As f'(x) is a
polynomial of degree lower then f(x), the only possibility choice is that that f'(x) =0. But in case

when characteristic of F is zero, f'(x) can be 0 only when f(x) is constant polynomial. Hence f(x)

has no multiple root in F.
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(i) Let f(x):(xnx”+..aixi+ocx+ocn, then f'(x):O only when icj=0 ; 2< i <n. Since
characteristic of F is p=0, i =0 only when p|ic;; . But p does not divide o, therefore pli. Hence

i=pk; for some k;. Consequently f(X) = otyX" +..0X' + 0ty = oy XPKn +.. 0 xPKi + 0y =g(XP) .

Corollary. If the characteristic of F is p=0, then for all n> 1, the polynomial xP —x e Ax] has

distinct roots.
Proof. As the derivative of the polynomial xP —x=pxP1—1=-1 in F, the polynomial and its
derivative has no non trivial factor in common. Hence polynomial xP —x has no multiple roots

i.e. all the roots of the polynomial xP —x are distinct.

SEPARABLE EXTENSIONS.

Definition. Separable polynomial. Let p(x) be an irreducible polynomial in F[x], then p(x) is
called separable over F if it has no multiple root in its splitting field. In other words we say that

all the roots of p(x) are distinct. Otherwise p(x) is called inseparable polynomial over F.

Definition. An arbitrary polynomial f(x) is separable over F, if all its irreducible factors are
separable over F.

Definition. An element a in extension K of F is called separable over F, if it satisfies some

separable polynomial over F. In particular, if it’s minimal polynomial is separable over F.

Separable extension. An algebraic extension K of F is called separable extension of F if every

element of K is separable over F.

Example (i). Let F be field with characteristic zero. Then every algebraic extension K of F is

separable.

]
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Solution. Let a be an arbitrary element of field K. Since K is algebraic extension, therefore, a
satisfies some irreducible polynomial over F. By Corollary 4.2.4(i), this polynomial has no
multiple root. Therefore, minimal polynomial of a over F is separable. Hence K is separable

extension of F.

Theorem. Let characteristic of F is p(#0). Then every algebraic extension K of F is separable if
and only if the mapping o : F—F given by o(a)=a is an automorphism of F.
Solution. Suppose o(a)=a" Vv aeF. Then

o(a+b) =(a+b)? =aP+PCaPb+PC,raP2b? +...+bP. But for 1< i < p-1, each PC; is
a multiple of p and hence is zero in F, therefore, o(a+b)=aP +bP =c(a)+o(b) and

o(ab) =aPbP =(a)o(b) . Hence o is a ring homomorhism on F. Further, suppose that aP =bP

which further implies that (a—b)P =0. But then a-b =0 i.e. a=h. showing that & is one-one also.

If o is onto also, then we have b in F such that o (b)=a i.e. bP=a. Equivalently we say that p" root
of every element is also contained in F.

Now we prove theorem as: Let K be an algebraic extension of F

and o be an automorphism on F given by o(a) =aP. Let a be arbitrary element of K and g(x) be
the minimal of polynomial of a over F. Then g(x) is irreducible polynomial over F. Let if

possible g(x) has multiple roots. Since characteristic of F is p=#0, by Corollary 4.2.4(ii),
g(x)=h(x")= aigxP +...+0,,_1xP +a; rp=n =degree of g(x). Since with the help of & we can
identify 0, :BP in F, therefore, h(x")= ngrp+...+BP_lxp+BP. Again with the help of ¢ we
have

h(P)= Box" +...+Br_x+PBr)P.
Then g(x)= BoX" +...+By_1X+PB;)P is a reducible polynomial over F, a contradiction and hence

a contradiction to the assumption that g(x) is not separable. Now it follow that every algebraic

extension K of F is separable.

]
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Conversely suppose that every algebraic extension K of F is separable. We will
show that c(a)=a" is an automorphism on F. Since this mapping is one—one homomorphism. In
order to show that o is an automorphism, it is sufficient to show that ¢ is onto also. Let if
possible o is not onto i.e. there exist aeF such that o(b)-a for all b in F. In other words, there
does not exist b in F such that b°=a. Simply we say that polynomial f(x)= x"-a has no root in F.
Let 0, 0y, ..., ap be the roots of xP-a. Then K=F(as, ay,..., o) is the splitting field of f(x). Further
if o and B are two roots of f(x), then o"-a=0 and BP-a=0. But then o’-B"=0. Equivalently, o=p.
Thus all the roots of f(x) are equal. Let ay= op=...=a, =0.. Then K=F(a).

Now xP-a=xP- o = (x-a)°. Since a is algebraic over F and does not belong to F,
therefore, degree of a is more than one. Let g(x) be the minimal polynomial of a over F. Since a
satisfies the polynomial f(x) also, therefore, g(x) divides f(x). Let h(x) be a monic irreducible
factor of f(x), then a is a root of h(x). Hence g(x)|h(x) and hence g(x)=h(x). But then f(x)=g(x)".
Now p=deg(f(x)) = deg(g(x)")=r deg(g(x)). Since deg(g(x))>1, therefore, deg(g(x))=p. Hence r=1.
But then f(x) becomes the minimal polynomial for a. As f(x) has multiple roots (namely a),
therefore, f(x) is inseparable polynomial. Hence o is not separable  and hence K=F(a) is
inseparable. Since K is algebraic extension of F which is not separable extension of F, a

contradiction. This contradiction proves that o is an automorphism on F,

Corollary. If Fis a finite field then every algebraic extension of F is separable.

Proof. Since F is finite field, its characteristic is finite prime number p (say). Since characteristic
of F is p, therefore, mapping o :F—F, defined by o (a)=a" for all acF, is an one-one
homomorphism. Since F is finite, this mapping is onto also. Hence is an automorphism on F.

Now by Theorem 4.3.4, every algebraic extension of F is separable also. It proves the result.

Problem. Let F be a field with characteristic p(20). Then element a lying in some extension of F
is separable over F if and only if F(a")=F(a).
Solution. Let K be an extension of F and acK be separable over F. The minimal polynomial f(x)

= Bo+PX+.APraX"T+x"  of a over F s separable. Let g(x) =

]
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BD +BPx+...+BP_x"Tx". Then g@P)=pP+pPaP +..+pP_@aP" D +aP". since the

characteristic of F is p(0), therefore, g(aP)=(Bg +PX +...+ BrgX" T+ xMP=f(@)P =0 i.e. &°
is a root of g(x). Also g(x) is irreducible over F. In fact if h(x) is a factor of g(x), then h(x") is a
factor of g(x) in F[x]. But g(x")=f(x)" and f(x) is irreducible over F implies that h(x") =f(x)* ; 0<
k < p. Since the derivative of h(x") with respect to x is zero over F, therefore taking derivative of
h(xP)=f(x)* on both sides, we get kf'(x)k_1 =0. Butthenk =0 or p.

For k=0, h(x)=1. For k=p, h(x") =f(x)" i.e. h(x")= g(x") and hence h(x)=g(x). Here
we see that the only divisors of g(x) are 1 and g(x) itself. Hence g(x) is irreducible over F. Then
[F(@"): F]=n=degree of g(x). As [F(a): F]=n, we get [F(a"): F]=[F(a): F]. Since a’eF(a),
therefore F(a")cF(a) . Now by above discussion F(a?)=F(a).

Conversely, let F(a”)=F(a) and suppose that a is not separable over over F. The

minimal polynomial of a over F is not separable. This gives that f(x)=g(x") and so a” is a root of
g(x). Clearly degree of g(x) is %:m(say). Hence [F(a"): F] < m < n. Since F(a’)=F(a) ,

therefore,

[F(a): F]= [F(a):F(@")][F(a"): F] <m i.e. n<m,
which is not true. Hence a contradiction to our assumption that a is not separable. Hence a is
separable over F.

SOME DEFINITION.

Definition. Let K be field. An isomorphism from K to itself is called an automorphism on K.

Two automorphisms ¢ and t of K are said to be distinct if o(a) = t(a) for some a in K.

Theorem. If K is a field and if o7, 09,...,04 are distinct automorphisms of K, such that

a01(u)+a20,(U)+...+a,0,(U) =0 V ueKthenall a, ay,....a, are 0 in K.

]
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Proof. Let if possible we can aj,as,...ap, in K, not all 0, such that
o1(u)+ax0,(U)+...+a,0,(U) =0 YV ueK. Remove all a=0, then after renumbering we
obtain the minimal relation such that
2101(U) +a202(U) +...+8mom(u) =0 (1)
forall ueKandeach a;#0,1<i<m.
Since o1(u)#0 VY ueK, therefore, if a;o1(U)=0 VY uekK, then a; must be zero in K, a
contradiction that all a; in (1) are non zero, therefore, m>1. As the automorphisms are distinct,
therefore, there exist an element ¢ in K such that 7(C) #6,(C) . Since cueK, therefore, by (1)
a01(cu) +asoo(cu) +...+amom(cu) =0
=&01(C)o1(U) +a202(C)or (U) +...+amom(C)om(u) =0 (2)
On multiplying (1) by ©7(C) and subtracting it from (2) we get
a2(02(€) —01(0))o2(U) +...+am(om(C) —o1(C))om(U) =0 3)
Since an=0 and by our choice 6,(C)—o7(C)#0, therefore, we get a relation in which at least

one of a=0 and containing at most m-1 terms, a contradiction that (1) is the minimal relation.

Hence contradiction to the assumption that

qo1(u)+arop(U)+...+8,0n(U) =0 YueK and at least one of a=0. Therefore, if

a01(u)+a26,(U) +...+a,0,(U) =0 V ueKthen each a;=0.

Definition. Fix Field of G. Let G be a group of all automorphism of K, then the fixed field of G
is the set of all elements ‘a’ of K such that o(d)=a VoeG. In other words, the fixed field of G

is the set of all elements of K which are left fixed by every element of G.

Lemma. Prove that fixed field of G is a subfield of K.

Proof. Let a, b be two elements of the fixed field. Then o(a)=a VoeG and o(b)=b VoeG.
But then o(@a—b)=0c(a)-o(b)=a—-b VY oeG. Hence a-b belongs to fixed field of G. As

e=c(bb ) =c(b)s(b HvoeG  implies that  (5(b)) t=oc(bHVoeG  and

]
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b1 :(G(b))_l :G(b_l)VGeG. Hence b1 also belongs to the fixed field of G. Now cs(ab_l)

=o(a)o(b™) =o(a)(s(b) L =ab L VoeG ie. ab? belongs to fixed field of G. Hence fixed
field of G is a subfield of K.

455 Definition. Group of automorphism of K relative to F. Let K be an extension of the field F.
Then the group of automorphism of K relative to F is the set of all automorphisms of K which
leaves every element of F fixed. It is generally denoted by G(K, F) . Hence oceG(K, F) if and

only if o(a)=o forevery a inF.

45.6 Lemma. Prove that G(K, F) is a subgroup of the group of all automorphisms of K.
Proof. Let o1 6,€G(K,F). Then oj(0)=a and op(a)=o for all aeF. Since

cz(oc):oc:>c§1(oc):oc VYaeF, therefore, 051 belongs to G(K, F). Now

(61051)((1):01(051((1):01(&):oc Vo eF. Hence clcgleG(K, F) and hence G(K, F) is a

subgroup of the group of all automorphism of K.

Example (i) Let K be the field with characteristic zero, then show fixed field of any group of
automorphisms of K contains Q (the field of rational number).

Solution. Let H be a subgroup of group of automorphisms on K and F be fixed field of H. Then F
is a subfield of K. Let % be an arbitrary element of Q and o be an arbitrary element of H. Since

leF, therefore, o) =1. Now a=1+1+...+1 , therefore,
atimes

o(@)=oc(l+1+...+) =c(@)+o@)+...+c())=a for al ceH. Hence acF. Similarly beF.
atimes atimes

As F is a field, therefore, b™ and hence ab*e F. Q c F.

Example (ii). Show that every automorphism o of K, field with characteristic zero, leaves every

rational number fixed.
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Solution. Since Q is a prime field, Q is contained in every field with characteristic zero. Let e be
the unit element of K, then e is unit element of Q also. Let ¢ be an arbitrary automorphism of K.
Since e.e = e, therefore, o(e.€) =o(e) = o(e)o(e) =o(e), but then o(e)o(e) =e.c(e). Hence

o(e)=e. Further a=gtet. te, therefore, o(a) =c(e)+...+o(e))=a. Similarly, o(b)=b.
atimes atimes

Therefore, a and b belongs to the fixed field of group of automorphism of K which contains c.

Hence ab™ also belongs to the same fixed field. But then G(%) =% V%e Q. It proves the result.

Example (iii). Let K be the field of complex numbers and F be the field of real number. Find
G(K, F) and the fixed field under G(K, F).
Solution. General element of K is a+ib, a and b are real numbers. Let ceG(K, F), then o(a)=a
and o(b)=b. Since i*=-1, therefore, o(i%)= o(-1)= -1.
As o(i%)= o(i)’= -1, therefore, o(i)=i or —i. Then we have two elements in G(K, F), 51 and o
where o1(a+ib)=a+ib and o,(at+ib)=a-ib. Hence G(K, F) ={o1, o2}. Let c+id is in the fixed field
of G(K, F), then oi(c+id)= oy(c+id). But then c+id=c-id, which holds only when d=0. Hence
fixed field contains only real number. Here in this case the fixed field is F itself.
1

Example (iv). Let F=Q (the field of rational numbers) and K=Q(23). Find G(K, F) and the fixed
field of G(K, F).

12 1
Solution. The general element of the field K is a+b.23 +¢.23, a, b, ceF. Put 23 =a. Then

general element of K is a+bo+col. Let ceG(K, F), then 5(a)=a, o(b)=b and o(c)=c. Since
1
o =2, therefore, o(0®) =5(2) =2. Hence o(c)® =2. As the only root of o(a)®>=2, 23 =a,

2

lies in K. Hence o(o)=ca. But then o(a+ba+co?)=a+boa+ca?ie o is identity

transformation. Hence G(K, F)={l}. Trivially the fixed field of G(K, F) is K itself.

Example (v). Let F=Q and K= Q(®), o is primitive fifth root of unity i.e. ® satisfies the

polynomial 1+ X +%2 +x3 +x* which is irreducible over F. Therefore, General element of K is

]
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o +oc10)+oc2032+oc30)3 ;ag,0q,00,03 €F. Let ceG(K, F). Then  and o(w) are conjugate

2,3

over F i.e. o(w) is also a root of polynomial 1+X+X“+X +x*. Since the roots of above

2

polynomial are o, o, ®°, ®*, therefore,

o(@=0 or o or o or o' Ifo(e)= o, 1<i<4, denote c by ;. Then G(K,

F)={ o1, o2, o3, o4}. If we denote the fixed field of G(K, F) by KG(K,F), then

o+ oo+ oczo)z +0c3c03 eKgik,F if

2

o1(og + oo+ ope” + oc3033) =0y (0 + oo+ oczooz + oc3033)

=o3(0g +0L1(o+oc2m2 +0c3co3) =0y (0 +oym+ azmz +oc3(o3) :
Using the fact that W =1, above equalities reduces to ,
2 3_ 2 4 _ 3 4 _
o + M+ 0™ +030 =0n +0 @ +0o® + 030 =0+t +0o0+030 =
o+ (11(04 + (12(03 + (13(02.
Since 1+ o+ w’+ *+ ©*=0, therefore, ®*=-1-0- w?-w°. But then the above equality reduces to
2 3
o + MW+ 0™ + 030
— 2 3
=op—0p +(03—0)o+ (0 —a)o” — oo
— 2 3
=g —ag+ (0 —oz)o—oz30” + (0 —oz3)m
— 2 3
=0 —0oy —oym+(og —ag)o” + (o —ag)o”.
These equality will hold simultaneously if aj =09 =03 =0. Hence the general element of
KG(K,F) IS o I.e. KG(K,F) =F.
_ .2 2 _ 4 3 _ .3 _ 4 I :
Further, op(w)=0", o5(®)=0 =ocy(m®), o2(0)=0"=0c3(0) and o3(w)=w=0c(w) i.e.
4 — — Gl 2 3 44 ;
oy =1 of G(K, F). Hence G(K, F)={ 0%, 65, 65,65} is a cyclic group generated by o©».
Consider the subgroup H = {o1, o4} of G(K, F). Let o +oc1m+a2032 +a3m3 € Ky . Then

o1(og +oyo+ 0c20)2 + 0L3c03) =oy(0g + oo+ OL2(02 + oc30)3)

]
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Equivalently,
o +oqm+ OL20)2 + OL30)3 =0g+ 0610)4 + (12603 + (130)2
On further simplification, we can write
2 3 _ 2 3
0 + 0O+ oM +03W =0 — 0 —oo+ (03 —oy )0 + (0 —oq)o”.

These two will be equal if a;=0 and ay=o03. Hence general element of Ky is

(o) +a2(m2 +oa3). Here we observe that index of H in G(K, F) i.e. no of distinct coset of H in

G(K, F)= [Kys:FI.

45.7 Theorem. If K is a finite extension of F, then G(K, F) is a finite group and its order , o(G(K, F))
< [K:F].
Proof. Let [K:F]= n with uj, Us,..., un is a basis of K over F. Further suppose that f1,fs,...,fr1

are distinct automorphisms of K. Consider the system of n homogeneous equation in (n+1)

variable X1, Xo, ..., Xn+1 aS:
f1(up)xq +fo(Up)Xo +...+ 9 U)Xy =0,

f1(U2)xq +2(U2)Xa +..+Tn 13 (U2)Xp42 =0,

f1(un)xg +f2(Un)x2 +..+ 1 (Un)Xn g =0.
It always has a non trivial solution say x;=a;, Xo=a2, Xp+1=an+1, iN K.

Therefore,
fi(up)ag +f(upag +..+Fpi1(up)an g =0

fi(uz)ay +f2(uz)az +..+fnia(U2)an1 =0,

]
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fi(un)ay +f2(up)az +..+fnya(un)any =0.
Let u be the arbitrary element of K, then u= ayUq +...+0pUp; aieF. Since
agfy (U) +agf2(u) +..+anafnia (U)
=ay(fy(Up)ag +2(up)ag +..+fh g (Upan )

+ap(fr(up)ag +fa(u)ag +.. 4+ (U2)an )

+an (fr(un)ag +f2(up)az +..4+fru1(un)ansa).
Now by above discussion,
ayf (u)+asfo(u)+...4ap4fr1(U) =0 Y ueK. But then by Theorem 4.5.2, each a=0, A
contradiction and hence contradiction to the assumption that
0(G(K, F)) > [K:F]. Hence o(G(K, F)) < [K:F].

46 SYMMETRIC RATIONAL FUNCTIONS.

4.6.1 Definition. Ring of polynomials in n variables. Let F be a Field. An expression of the form
Zail..ainxill..xinn ; Olp ) Oy e O eF is called polynomial in n variables xi, Xa,..., Xn. The set

of all such polynomials is denoted by F[x1, Xa,..., X5]. If we define component wise addition as
one operation and multiplication of the polynomial using distributive laws as the second
operation. Then F[Xxy, X2...., X,] becomes ring.

If F is field, F[xi, X2, ..., x5] becomes an integral
domain. Now we can talk about field of quotient of F[x3, X2, ..., xn]. It is denoted by F(x3, Xa,...,
Xn). It elements are quotient of polynomials from the ring F[xi, Xz, ..., xp]. Let S, be the
symmetric group of degree n considered to be acting on the set {1, 2, ..., n}. Let

r(xq, ....Xn) €F(Xg, ....Xp). Define the action of ceSyon  r(Xg, ....Xp) by

o(r(Xy, -Xn)) =r(Xs(), -+ Xo(n)) . Now we define:

]
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4.6.2 Symmetric rational function. Let r(Xy, ...,Xp) €F(X1, ....Xp) . Then r(Xyq, ...,Xp)is called
symmetric rational function in F(Xq, ...,.Xp) if o(r(Xq, ....Xp))=r(Xg, ....Xp) forall ce$S,.
In other words, these are the rational functions which are left fixed by S,. Since symmetric
rational functions lies in the fixed field of S,. They form subfield of F(Xl, ...,Xn). Let S denote

the field of symmetric rational functions.

Example. Function given below are elementary rational function..

(i) If a1 =X1+Xo, ap =X1Xo, then ap, ay, are elementary symmetric functions in X; and Xo.
(i) If ap =X1 +Xo +X3, 8 =X1Xo +XoX3+X3Xq, a3 =X1X2X3, then a1, a,

ag, are elementary symmetric functions in X, Xo and Xs.

(iii) If a3 =Xq +Xo +X3+Xyg, a9 =X1X2 +X1X3+X1X4 +X2X3 +XoX4 +X3X4,

a3 = X1X2X3 + X1 XoX4 +X1X3X4 +XoX3Xg, a4 =X1X2X3X4, then ap, a, ag, ag are

elementary symmetric functions in X1, Xp, X3 and X4.

n n
(iv) If a1 = 2Xj, ap = X XjXj, a3 =X XjXjXk,....an = [1Xj, then a1, ap, ag,...,an, are
i=1 i<j i<j<k i=1

elementary symmetric functions in X1, Xo,..., Xp.

4.6.3 Theorem. Let F be field and F(Xq, ...,Xp) be the field of rational functions in Xy, ...,Xp over F.

Suppose that S is the field of symmetric rational functions; then

(i) [F(Xq1, -.-Xp) :S]=n!

(ii) G(F(Xq, ....Xp) , S)=Sn, the symmetric group of degree n.

(i) If a;, ap, ..., a, are the elementary symmetric functions in Xp, Xo,...,Xp, then
S=F@y, ....ap)-

(iv) F(X3, ...Xp)is the splitting field of over K@y, ....a,)=S of the polynomial

t" —at" L a,t" 2. a, (<)
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Proof. (i) As Sy is the symmetric group of degree n on set {1, 2,..., n} and G(F(Xq, ...,.Xp), S) is
a group of automorphisms of F(Xy, ...,Xy)which leaves every element of S fixed. Let
r(Xq, ....Xn) €S. Then by definition of symmetric rational function, for oe€S,,
o(r(Xq, . Xp))=r(xq, ... Xp)  Vr(xq, ...Xp)eS. But then by definition 4.5.5,
ceG((F(Xq, -.-Xp), S) . Hence o(G(F(Xq, -..,Xn),S) > n!. By Theorem 4.5.7,
[F(X1, ... Xn): S1=o(G(F(Xy, ....Xp),S) > n! *)
As aj, a,..., a, are elementary symmetric functions in Xy, Xa,..., X, therefore, aj, a,,..., a, are
contained in S. But then F(ay, ay,..., a))<S. Hence
[F(xq, .., X): F(aq, ..., ay)]
= [F(xq1, o, %):S][S: F(aq, ..., ay)] (**)
Consider the polynomial
t" —at"Lra t" 2. + (<) a,.
It is polynomial over F(@y, ...,ap). Since ai, ay,..., a, are elementary symmetric functions in x;,
Xo,..., Xn, therefore, we have
t" —agt" T ra t" 2.+ (<) a, = (t—X)(t—X)...0—Xp).
Here we see that Xi, Xa,..., x, are the roots of above polynomial, therefore, F(Xy,...,Xq) is
splitting field of t" —ayt" ™ +a,t"2...+(~1)"a,, proving (iv). Further we know that if K is the
splitting field of some polynomial f(x) of degree n over the field F, then [K:F]<n! . Hence
[F(xq, ..., xp): F(aq, ...,ay)] < n! (***)
By (*) and (**) we get that
[F(xq, ..., x): F(ayq,...,a,)] = n!
Using (***), we get [F(Xq, ....Xn):F@q, ...,ap)]=n!.
Therefore,
[F(Xq, ....Xp):S][S: F(ay, ....an)]=n.
By (*),
[F(Xq, ... Xp):S]=nt.

]
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Ttherefore, we get [F(Xq, ....Xp):S]=n! and [S:F(ay, ....ap)]=1i.e. S=F(ay, ...,a), proving
(1) and (ii1).
Further, nI=[F(Xq, ...,X;):S]> o(G(F(Xy, ...,Xp),S) = n! implies that

o(G(F(Xq, ..-,Xp),S) = n!, proving (i).

Note.(i) By above theorem we come to know that symmetric rational functions in n variables is a
rational function in the elementary symmetric functions of these variables. More sharply we can
say that: A symmetric polynomial in n variables is a polynomial in their elementary symmetric

functions.

NORMAL EXTENSION.

Defnition. Normal extension. A finite extension K of field F is called normal extension of F if
the fixed field under G(K, F) is F itself.

Example. In 4.5.6, as discussed in example (iii) and (v), K is a normal extension of F while in

example (iv), K is not a normal extension of F.

Theorem. Let K be a normal extension of F and let H be a subgroup of G(K, F); let Ky
={xeK | o(x)=x V ceH}be the fixed field under H. Then

(i) [K: Ky]=o(H) . (ii) H=G(K, K).

Proof. Since H leaves every element of Ky fixed, therefore, HCG(K, Ky). Hence o(G(K, Ky)) >
o(H). Moreover [K: Ky] > 0(G(K, Ky)). Hence [K:Ku] > o(H). As Ky is a subfield of K, we can
find aeK such that K=Ky(a); this a must therefore satisfy an irreducible polynomial over Ky of
degree m=[K: Ky] and no nontrivial polynomial of lower degree. Let o1, o2, ..., on be the
distinct elements of H, where o3 is the identity of G(K, F). Then o(H)=h. Consider the following
functions:

n n
(x]_:_ZGi(a), (03] =.Z.Gi(a)6j(a), cees Ol =_H6i(a).
i=1 <] i=1

]
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Let oeH, then o©0p,00),...00, are all distinct elements of H. Hence

{ocy,009,....00h}={01,09,....0n}. Now
(o) = c(_%si (@)= _%Goi (a)= .%ci () VoeH,

aq remains invariant under every ¢ € H and hence belongs to Ky. Similarly each o belongs to
Ky. Consider a polynomial

h_1+...+(—l)hoch.

(x=01(8))(X—~02(a))...&—on (8) = X" —ax
The roots of this polynomial are a=ocy(@), 67(@), ...on@). As o eKy,

X! —oclxh_1+...+(—1)hah is a polynomial over Ky with a as its root. Since the degree of

minimal polynomial of a is m, therefore, h > m. Hence [K:Ky] < o(H). Now by above discussion,
[K:Ky] = o(H). Further o(H)= [K:Kyx] = o(G(K, Ky)) = o(H) implies that o(H)=0(G(K, Ky)).
Hence H=G(K, Kp).

Note. Let K be a normal extension of F, then K¢k, n=F and [K: K¢, r] = 0o(G(K, F).

Theorem. Let K be finite extension of field F, characteristic F is zero. Then K is a normal
extension of F if and only if K is splitting field of some polynomial over F.

Proof. Since characteristic of K is zero; K is simple extension of F. Hence K=F(a) for some a
eK. Let o1, o, ..., op are distinct elements of G(K, F) where o; is the identity of G(K, F).
Consider the following functions:

n n
a1 = ¥6i(a), ap = ¥ 6j(@)oj(@), ..., an = [16j(a).
=1 <] i=1

Then it is easy to see that oy, a0, ..., Oy are elementary symmetric functions
in 51(a), o2(a) ...,on(a)(show that oq, oy, ..., oy are elementary symmetric functions in c1(a),

o2(a) ...,on())
Let us suppose that K is normal extension of field F. Then by definition of normal

extension, F is fixed field of G(K, F). Consider the polynomial

]
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-1

(X—061(2))(X—062(@))...k—0, (@) =X" —oy X" 4.+ (=) 0ty

The roots of this polynomial are a=07(a), 6(a), ...,0n(a). Since each a; is left fixed by each

ceG(K, F) and hence belongs to fixed field F of G(K, F). Therefore,

n-1

X" —ogx" 4. 4+ (=) o, eFX]. Since a €K and o; is an automorphism on K, ci(a) also

belongs to K. As K is smallest field containing all the roots of the polynomial
X" —apx" L+ (<)o, eFAX], K is splitting field of X" —ogx" L +...+ ()", over F.
Hence K is splitting field of some polynomial over F.

Conversely, suppose that K is splitting field of polynomial f(x) over F. We want to
show that K is normal extension of F. We proceed by applying induction on [K: F]=n. If n=1,
then K=F. Since fixed field of G(K, F) is contained in K=F and contains F, therefore, fixed field
of G(K, F) is F itself and the result is true in this case. Assume that result is true for any pair of
fields K; and F; of degree less then n that when ever K is splitting field of some polynomial over
F1, then K is normal extension of F; also.

If f(x) eF[x] split into linear factors over F, then K=F, which is certainly a normal
extension of F. So, assume that f(x) has an irreducible factor p(x) €F[x] of degree r >1. Since
every irreducible polynomial over the field of characteristic zero has no multiple roots, let

oy, 0,...,0 are distinct roots of p(x) all lies in K. Consider the field F(a4). Since F < F(ay),

therefore, f(X)eF(ay)[x]. But then K is splitting field of f(x) over F(ay) also. Since
[K:F]=[K:F(01)][F(a1):F] and [F(ap):F]=r>1, we have [K:F(a3)]<[K:F]. Hence by induction
hypothesis K is normal extension of F(a;) and Hence fixed field of G(K, F(a))=F(ay).

Let ®eK be arbitrary element which is left fixed by every ceG(K, F). We will
show that weF. Let 6:eG(K, F(ay)), then o, leaves every element of , F(a;) fixed and hence also
leaves every element of F fixed, therefore, ;e G(K, F). Then by assumption c1(®) = o for every
01€G(K, F(az) and hence belong to the fixed field F(a1) of G(K, F(a). Since every element of
F(ay) is of the form

2

r-1 r— .
Braoq ~+PBr_poy “+..+PBo; Bro1, - PoeF,

we have
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2

+..+Bp.

Since we always have an automorphism c;eK such that cieG(K, F) and oi(ap)= o . Further by

r-1 r—
o=Brg0q " +Pr_20q

our choice oj(®)=w, and cj(B)=P VP eF we have
©=0(®) =Br-107(cd ) +Br-20i (0 ) +...+Bo.
Equivalently, By_gol 2 +B;_o0l 2 +..+Bp—0=0;i=12,...,r.

Thus the polynomial

2

Br_]_Xr_l +Br_2Xr_ +...+BO -

of degree at most » — 1 has ayq, O, ..., o as r distinct root. This is possible only when all

the coefficients of the polynomial are zero; in particular Bg—o =0. Hence w=[3g € Fand hence

F is the fixed field of G(K, F) i.e. K is normal extension of F.

Corollary. If K is an extension of field F(characteristic F=0) such that [K: F]=2, then K is
normal extension of F.

Proof. Since characteristic of F is zero, therefore, K=F(a) for some aeK. It is given that [K:F]=2,
therefore, a satisfies an irreducible polynomial of degree two. Let f(x)=x*+bx+c be its minimal
polynomial of a over F. One of the root of f(x) is a and v be another root of f(x). Butthen v+a=
-b = v = -b - a which lies in K. Hence all the root of f(x) lies in K. Since K is smallest extension
which contains all the root of f(x), K becomes splitting field of the polynomial f(x). Hence by

Theorem 4.7.4, K is a normal extension of F

Example. Show by an example that normal extension of normal extension of a field need not be
a normal extension of that field. In other words if L is normal extension of K and K is normal
extension of F, then L may not be a normal extension of F.

1
Solution. Let F=Q(field of rational numbers), K=Q(+v/2) and L=Q(24). Since/2 satisfies an

irreducible polynomial x>-2 over F, [K: F]=2. Then by Corollary 4.7.5, K is normal extension of
F.
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1
As 24 ¢Q(+/2) and satisfies the polynomial X% 2 over Q(V/2), therefore, [
1
Q(24): Q(~/2)1=2. Again by Corollary 4.7.5, L is normal extension of K.
1
Since 24 satisfies the polynomial x*-2 over F which is irreducible over Q. Its
1 1 1 1

roots are 22, -22, i24 and -i 24 . Since the imaginary root of polynomial x*-2 does not lies in

1
L=Q(24), L is not splitting field of x*-2 over Q. Hence L is not a normal extension of F.

4.8 CHECK YOUR PROGRESS
Q (i) What can be the degree of irreducible polynomial over an algebraically closed field.
Q (ii) Discuss the results of Theorem 4.2.3 by some examples
Q (iii) Is x° — 2 irreducible over a field of characteristic 3. Also discuss its irreducibility over
the field of rational numbers.
Q (iv) Write an example of separable polynomial over the field of rational numbers.
4.9 SUMMARY

In this chapter, we study algebraically closed fields, rational symmetric functions, normal

extensions and fixed fields.

4.10 KEY WORDS

Normal, Separable, splitting field, rational, Algebraically closed, Symmetric.

4.11 SELF-ASSESSMENT TEST

(1) Prove that every automorphism on K must leave rational number fixed.
(2) If K is an extension of field F, char F=p#0 and acK is separable over F, then F(a) is
separable extension of F.

(3) Prove that for given fields FcLcK, if K is separable over F, then it is separable over L also.

]
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4.12 ANSWERS TO CHECK YOUR PROGRESS

Answer to Q (i) By Theorem 4.2.2, its degree can be zero or one.

Answer to Q (iii) By Corollary 4.3.4, it is reducible over field of characteristic 3 while, it is
irreducible over the field of rational numbers

Answer to Q (iv) x3 —2 is separable over Q (the field of rational numbers). Infact every

irreducible polynomial is separable over Q.
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5.0 LEARNING OBJECTIVE. oObjective of this chapter is to study the Fundamental

Theory of Galois. With the help of splitting field K of polynomial f(x) over the field F, Galois
Group G(K,F) of the polynomial f(x) is obtained in order to see that the general polynomial of
degree n>4 is not solvable by radicals.

51 Introduction. In this chapter, we study about perfect fields in the Section 5.2. In next section, we
study about Galois group of a polynomial and Galois Theory. In Section 5.4, by the use of Galois
Theory, we see that general polynomial of degree n > 4 is not solvable by radicals. As there are
polynomials (for example x>+1, x*+x+1 having primitive second root of unity and primitive

]
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third root of unity) whose all roots are primitive n™ roots of unity called as n™ cyclotomic
polynomials, are studied in Section 5.5. In last section we study about finite fields and show that

for given prime p and positive integer n, there always exist a finite field of order p".

5.2 PERFECT FIELD.

5.2.1 Definition. A field F is called perfect if all finite extensions of F are separable.

5.2.2 Theorem. Prove that any field of characteristic O is perfect.
Proof. Let F be a field with O characteristic. Let K be finite extension of F. Then K is algebraic
extension of F also. Therefore, every element k of K satisfies some irreducible polynomial over
F. Since characteristic of F is 0, therefore, every irreducible polynomial is separable over F.
Hence every element k of K is separable over F. i.e. K is separable extension of F. Therefore,

every finite extension K of F is separable over F. i.e. F is perfect field.

5.2.3 Theorem. Prove that a field F of characteristic p (#0) is perfect if and only for every ae F, we
can find b in F such that bP=a.

Proof. Proof follows from Theorem 4.4.5.

5.3 GALOIS THEORY.

5.3.1 Definition. Galois Group. Let K be the splitting field of some polynomial f(x) over F. The

Galois Group of f(x) is the group of all automorphisms of K leaving every element of F fixed.

5.3.2 Lemma. If K is a normal extension of field F(characteristic of F =0) and T is a subfield of K
containing F, then T is normal extension of F if and only if o(T)cT for all e G(K, F).
Proof. Since K is normal extension of F, therefore, K is a finite extension of F. Hence T is also a
finite extension of F. Since the characteristic of T is zero, therefore, T=F(a) for some a in T.

Suppose that T is normal extension of F. Then to prove that o(T) < T for all e G(K, F).

]
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Since T is normal extension of F, therefore, G(T, F) is a finite subgroup of G(K,
F). Let 61, 62,...,0m be the m distinct elements of G(T, F) where o3 is identity element. Since
c1(a),...,om (@) are the elements of T, consider the polynomial p(X)= (X-c1(a))...(x-om (8))=
XM —ox™ L4+ (D)Mo, Where ag, 0p,..., am are elementary symmetric function in c1(a),...,om
(a). Further each o; is invariant under elements of G(T, F). Since T is normal extension of F,
therefore, each a; belongs to F. Hence p(x) is a polynomial over F with a as its root lying in K.
Now for ce G(K, F), o(a) is also a root of p(x). But all the roots of p(x) lies in T, therefore,

o(a)eT. Since T=F(a) and [T: F]=0(G(T, F))=m, the arbitrary element t of T is of the form

t=pa™ L +B,a™ 2 +...4Bm; BrB2s..Bm eF.
Then for ceG(K, F),

o(t) =o(Ba™* +B2a™m 2 +...+By)
=o(Bpo(@)™* +o(Bz)o(@)™ 2 +...+o(Bm)
=Bro(@™ L +Boo(@)M 2 +..+Bm.
By above discussion, o(t) e T V o e G(K,F). Hence o(T) T VoeG(K,F).
Now suppose that o(T)cT VoeG(K,F), we will show that T is normal

extension of F. Since K is normal extension of F, therefore, G(K, F) is finite. Let 631, 62,...,0, be
the n distinct elements of G(K, F) where o3 is identity element. Since T=F(a) for some ain T and
o(T) cTVoeG(KF), we get that oi(a),...,on (@) are the elements of T. Consider the
polynomial f(x)= (x-o1(a))...(x-on (@)= x"—oyx"1+..+(-)"a, where oy, 0p,..., 0, are
elementary symmetric function in o1(a),...,on (a). Further each q; is invariant under elements of
G(K, F). Since K is normal extension of F, therefore, each «; belongs to F. Hence f(x) is a
polynomial over F with a as its root lying in T. Since a is a root of f(x) and T=F(a) is the smallest

field containing all the roots of f(x), T becomes splitting field of polynomial f(x) eF[x]. Hence T

is normal extension of F.
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5.3.3 Theorem. Show that Galois group of a polynomial over a field is isomorphic to a subgroup of

group of permutation of its root.
Proof. Let f(x) be a polynomial over the field F. Let K be the splitting field of f(x) over F. Then
K is normal extension of F. Therefore, the Galois group G(K, F) of f(x) is of finite order [K:F]=
n, say. Let 61, 62,...,0n be the n distinct elements of G(K, F). Let S={a, ay,..., am} be the set of
m distinct roots of f(x) in K and P be the set of all those permutations on S which changes only
those elements of S which are not in F i.e. P is the set of all those permutations on S which
leaves every element of F fixed. If y; and , are two elements of P then the composite mapping
1y also fixes every element of F. But then yiy,eP. Equivalently, we have shown that P is a
subgroup of group of all permutations on S.

Let 5eG(K, F). Take o as the restriction of o to S. If a is a root of f(x) in K, then
o(a) = o*(a) is also a root of f(X) in K. Since S is the set of all the root of f(x), therefore, o*(a)e
S. Hence o* is a function from S to S. Being a restriction of ¢, ¢* is a one-one and onto mapping
which leaves every element of F fixed. Hence c*¢<P.

Define a mapping 6 from G(K, F) to P by
0(c)=c V¥V oeG(K,F)

0 is one-one. Let o1 and o, belongs to G(K, F). If 6 (c1)= 0 (o), then o1*=c,* . But then
o1*(a)=oc2*( a) for all aeS. Equivalently, oi(a)=c2(a) for all aeS. Since K=F(ay, ay,..., o),
therefore, every element of K can be obtained from F and as, ap,..., am. Hence if BeK, then
o1(B)=02(B) for all BeK. Hence o1 = o,. Therefore, mapping 6 is one-one.

0 is onto. Let g be any element of P. Then g is a permutation on S leaving those elements of
elements of S fixed which are in F. Obtain an extension mapping g~ of g. i.e. a mapping such that
g*(a)zg(oc) for all a belonging to S and which leaves every element of F fixed. Clearly such a

mapping g is obtainable in G(K, F) because K=F(0, ¢a,..., am). Hence mapping 6 is onto also.

]
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0 is homomorphism. Let o; and o, belongs to G(K, F). Then 6(c16,) = (0162)*, the restriction
of 162 0n S. But then

(0102)*(a)= 6162(0) =01(02(r))= o1(02*(1))= 61*02* () V LeS.
Hence (c102)*= o1*02* and hence 6(c162)=(0162)*= 61*0,*=0(01)0(c2), proving that 6 is an

isomorphism from G(K, F) to P.

Theorem. Let f(x) be a polynomial in F[x], K its splitting field over F and G(K,F) its Galois
group. For any subfield T of K which contain F, let G(K,T) ={ce G(K, F)| o(t)=t for every teT}
and for any subgroup H of G(K, F) let Ky ={xeK| o(x)=x for every ceT}. Then association of T
with G(K, T) sets up a one-one correspondence of the set of subfield of K containing F onto the
set of subgroup of G(K, F) such that

(i) T=Ke, 1

(i) H=G(K, Kg)

(iii) [K:T]=o(G(K, T)), [T:F]= index of G(K, T) in G(K, F)

(iv) T is normal extension of F if and only if G(K, T) is a normal subgroup of G(K, F).

(v) When T is normal extension of F, then G(T, F) is isomorphic to G(K, F)/ G(K, T).

Proof. (i) By Theorem 4.7.2, if K is a normal extension of F, H is a subgroup of G(K, F) and Ky
is the fixed field under H. Then [K: Ky] =o(H) and H=G(K, Ky). It is given that K is the splitting
field of polynomial f(x) over F. Since FcT, therefore, f(x)eT[x]. But then K is splitting field of
f(x) over T. Hence K is normal extension of T also. Therefore Kgk 1)=T.

(if) Again by Theorem 4.7.2, H=G(K, Ky). (write prove the theorem 4.7.2). By this theorem we
get that any subgroup of G(K, F) is of the form G(K,T) corresponding to the subfield T of K
containing F. Define a mapping from the set of all subfields of K containing F and the set of all
subgroup of G(K,F) by setting ¢&(T)=G(K,T). This is an onto mapping as for given subgroup
G(K,T) we have T as its fixed field. This is one-one mapping as if ¢(T1)= ¢(T2), then G(K,T,)=
G(K,T2). But then Kgk 1) =Kgk T, Since Ty and T, are subfield of K containing F, by (i) Ty

]
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=T,. Hence there is one to one correspondence between the set of all subfields of K containing F
and the set of all subgroup of G(K,F).
(i) Since K is normal extension of T, therefore, by Theorem 4.8.2, [K:T] =0(G(K,T)).
Further K is normal extension of F, therefore, [K: F]= 0G(K,F). As K is finite extension of T and
T is finite extension of F, therefore, [K:F]=[K:T][T:F]. Equivalently o(G(K,F))=[K:T] o(G(K,T))
i.e. [K:T]= o(G(K,F))/ o(G(K,T))=index of G(K,T) in G(K, F).
(iv) By Theorem 5.3.2, T is normal extension of F if and only if
o(T)cT forall ceG(K, F).

As K is normal extension of T, therefore, fixed field of G(K,T) is T itself. Therefore, T is normal
extension of F

if and only if t(o(t))=o(t) forall teT, ceG(K, F) and teG(K,T)

if and only if o™ to(t)=(t) for all teT, ceG(K, F) and t1eG(K,T).
But then by definition of G(K,T), s toeG(K,T) for all 5eG(K, F) and teG(K,T). Hence T is
normal extension of F

ifand only if otoeG(K,T) forall 5eG(K, F) and 1eG(K,T)

if and only if G(K,T) is normal subgroup of G(K, F).
Hence T is normal extension of F if and only if G(K,T) is normal subgroup of G(K, F).
(v) It is given that T is normal extension of F. But By 5.3.2, T is normal extension of F if and
only if o(T))T for all ceG(K, F). Let 6 be the restriction of o on T i.e. o (t) = o(t) for every
teT. Since o leaves every element of F fixed, therefore, ¢~ also leaves every element of F fixed
and hence o eG(T, F). Define a mapping vy : G(K, F)— G(T, F) by y( 6)=c . The mapping is

well defined as if o©1=0,, 61(k)=0,(k) for every keK. But then o;(t)=c»(t) for every t eT.

Equivalently, GI(t)ZG;(t). Hence GIZG; and hence y(c1)= y(oy) i.e. mapping is well

defined.
Since (0162) (Y)=(c162)(t)=01(c2(t))=0; (GE ()= GI(G;(t)) = csIcsZ(t) V teT, therefore,

(6162)= ©105. Then y(0162)=(0162) =0105= y(o1)y(cz) i.e. v is an homomorphism of

G(K,F) into G(T,F). By fundamental theorem on homomorphism, GK(eKr’ F) ~y(G(K,F)). Now
v

]
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we evaluate Ker y. Let ce Ker y, then wy(o)=I, where | is the identity of G(T,F). Then ¢ =l i.e.

o (t)=t for every t in T. Since o ()= o(t)=t, therefore, ceG(K, T) and vice versa. Hence

G(K,F) . G(K,F - oG(KF)_ . Lo - .
G(KT) =y(G(K,F)). Further o( G(K.T) )= oG(K.T)) = [T:F] (by (iii)). Since [T: F]=o(G(T:

F). Therefore, image of G(K, F) in G(T, F) is all of G(T, F). Hence %;G(T,F). It

completes the proof of theorem.

5.4 SOLVABILITY BY RADICALS.

Consider general quadratic polynomial x*+a,x+a, over the field F. This polynomial then

can be taken over the field F(a;, a,), extension of F obtained by adjoining a; and a, to F. Let a

and [ are its roots, then oc=—a1+1/af—4a2 and B=-a;— a12—4a2 . We see that there is a
formula, which expresses the roots of p(x) in terms of a; and a, and square roots of rational
functions of these.

Consider general qubic polynomial t(x)=x’+a;x*+a,x+az. Then by Cardan’s formula if

we let

3 2

2 3 3 2
a2 am pzaJ_ﬂ P, :sJ_ﬂ_ S
P=82=75 Q=% 73 *a 2Tty o7ty

. . a
with cube roots chosen properly) then the roots of equation x*+a;x*+a,x+as are P+ _a
3

0)P+0)2Q—a—31, w2P+wQ—a—31; w(#1) is cube root of unity. We see that there is a formula,

which expresses the roots of p(x) in terms of a; and a, and square roots of rational functions of
these. Similarly we obtain the roots of q(x) in terms of a;, a, , az, by taking relations between
square roots and cube root of rational function in a;, a; and as. Now the over all observation is

DDE, GJUS&T, Hisar 99 |



ALGEBRA MAL-511

that we can obtain an extension of F(aj,a;, as) by adjoining square root and then a cube root to
F(a1,a2, as) , which contains all the roots of g(x). Similar formula can be obtained for bi-quadratic
equations. Can we obtain such an formula for fifth degree equations. ? The answer is no. In
mathematical terms we say that every polynomial of degree less then or equal to four is solvable
by radical while general polynomial of degree more than four is not solvable by radicals.

5.4.1 Definition. For given field F, polynomial p(x) in F[x] is solvable by radicals over F if we can

find a sequence of fields F1=F(w1), F2=F1(®2), ..., Fk=Fk1(cx) =F(o1, ®2,..., o) such that of € F

, 0f €F,...,0f R, such that the roots of p(x) all lies in Fy.
5.4.2 Remark. If K is the splitting field of p(x) over F, then p(x) is solvable by radical over F if we can

find a sequence of fields FcF1=F(w1) cF2=Fi() < ...cF=Fia(ok) such that of €F, of €R

..., 0 Ry such that the roots of p(x) all lies in F and F cK.

5.4.3 Theorem. If the field F contains all the n™ roots of unity, a is nonzero element of F, and K is the
splitting field of the polynomial x"-a over F, then
(i) K=F(u); u is the root of x"-a
(ii) The Galois group of x"-a over F is abelian.

2
Proof. Take a=e " . Then a is n™ root of unity such that o™ =1 for 0<m<n. We call o as

primitive n™ root of unity. Trivially 1, a, o, ..., a™ all are root n™ roots of unity. All these are

distinct as if o' = o/ , 0<i<j<n-1, then o' =1, a contradiction that o™ #1 for 0O<m<n.
J
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2 .., uo™? are distinct roots of x™-a. By our

If u is root of x"-a in K, then u, ua., ua
assumption o lies in F, therefore, all the roots of x"-a lies in F(u) and F(u) is smallest such field.
Hence the splitting field of x"-a is F(u) and thus K=F(u).

If 51, 52 are two elements in the Galois group G(K=F(u), F) of x"-a i.e. 61, o

leaves every element of F fixed. But then o1(u) and o»(u) are also roots of x"-a . Since u, ua, U

ooy U™ are only distinct roots x"-a, therefore, o1(u)= uo! and oo(U)= uo) for some positive
integers i and j. Then o162(U)= o1 (c2(U))= o1 (ued =01 (U) o1 (o) )=ua'™. Similarly o,0:(u)=
ue =ual. Therefore, 510, and 6,01 agree on u and F, hence on all of K=F(u). But then o106

= 0,01, Whence the Galois group is abelian.

5.4.4 Corollary. If F has all n™ root of unity, then adjoining one root of x"-a to F, where a belong to F,
is a normal extension.
Proof. It is clear from Lemma that K=F(u), u is root of x"-a, is splitting field of x" -a over F.

Hence K is normal extension of F.

5.4.5 Theorem. If F is a field which contains all n™ root of unity for every positive integer n and if
p(x) eF[x] is solvable by radicals over F, then the Galois group over F of p(x) is a solvable group.
Proof. Let K be the splitting field of p(x) over F and G(K,F) is Galois group of p(x) over F. Since
p(x) is solvable by radicals, there exist a sequence of fields

FgFj_:F((Dl) ngzFl((j)z) c.. ,ng:Fk-l(mk)a
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such that ol eF, 0% €R,...,of eR_ and where KcFy. As we pointed out without loss of

generality we may assume that Fy. Since FcF; for all 1< i < k, therefore, p(x) also belongs to
Fi[x]. Hence Fy is the splitting field of p(x) over F;. Hence F is normal extension of F; also.
By assumption F contains all the n root of unity for all positive integer n, therefore, each

Fi.1 also contains all the n™ root of unity. In particular, Fi; also contains all the r;" root of unity. If
we take a polynomial X'l —0){‘ eFia[x], then by Theorem 5.4.3, Fi=Fi_.1(;) is normal extension of
Fi.1. Since Fi is also normal over F;.;, therefore, by Theorem 5.3.4, G(Fx, F;) is normal subgroup
of G(Fy, Fi.1). Consider the chain

G(Fk, F) © G(Fx, F1) o G(F, F2)> ..o G(F«, Fk1) o{e} (%)
Since for each i, 1<i <k, G(Fk, Fi.1) is normal in G(Fy, F;), G(Fk, F1) is normal in G(F, F) and

Fi is normal extension of Fi;, by Fundamental Theorem of Galois theory,

G(R..Fia) o i ool G(h. Fi-1)
G(R,F-1)= . 5.
GHAED; G F) Since by Theorem 5.5.3, G(R,F_1) is abelian, therefore, G F)

is abelian. Thus each quotient group % of the chain (*) is abelian. Thus G(F,F) is
Al

solvable. Since KcFy and is a normal extension of F. Again by Theorem 5.3.4, G(FR,K) is a

normal subgroup of G(FR¢,F)and G(K, F);%. Thus G(K, F) is homomorphic image of

G(Fk, F), a solvable group. But we know that homomorphic image of a solvable group is also
solvable. Hence G(K, F) is solvable. Since G(K, F) is Galois group of p(x) over F the theorem

has been proved.

]
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Remark. (i) Converse part of Theorem 5.4.5 is also true; i.e. if Galois group of p(x) over F is
solvable then p(x) is solvable by radicals over F.

(if) Theorem 5.4.5 and its converse part is also true even when F does not contain the roots of
unity.

Theorem. The general polynomial of degree n > 5 is not solvable by radicals.

Proof. Take F(ay, ay, ..., an), the field of symmetric rational functions in the n variables a;, ay, ...,

an. If X1, Xo,..., Xy are n variable such that

n n
ap = XXj, a2 =X XjXj, a3 =_ X XjXjXk,...,ap = [1X.
i=1 i<j i<j<k i=1

Then Xy, Xa,..., X, are the root of the polynomial

"+ agt" +. .+ ap.
But then F(xy, X, ..., X,) is the splitting field of above polynomial. Since (Theorem 4.6.3) Galois
group G(F(x1, Xa, ..., Xp), F(a1, az, ..., an))=Sp, (symmetric group of degree n on {1, 2, ..., n}).
Then, by Theorem 5.5.5, t"+a;t"*+...+ a, is solvable by radicals over F(ay, ay, ..., a,) if and only
if S, is solvable. As we know that S, is not solvable for n > 5. Hence the general polynomial of

degree n > 5 is not solvable by radicals.

CYCLOTOMIC POLYNOMIALS.

Let C be the field of complex numbers. Consider the complex number on=
i2n
cosE +isin“f=e N . Then o"=1 and a™£1 for 1< m < n. We call o as a primitive n™ root of
n n

unity. Clearly a satisfies the polynomial x"-1 over field of rational numbers. Now the question is

that what is minimal polynomial of a ?

Definition. Cyclotomic polynomial. Polynomial ¢ »(x) defined as:

(@) ¢1(x)=x-1

]
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x"-1)
[1¢q(X)

polynomials are called cyclotomic polynomials. ¢(x) is called n™ cyclotomic polynomial.

(b) if n>1, g(X)= , Where d runs over all the divisors of n except for n itself. These

(=D _ (=D _, g

Example. (i) ¢(x)=

Ma(x) (x-1)
N ¢\ N e R
(i) #5(x)= 200 D) =X +Xx+1
S R S
(iii) gu(x)= ¢1(X)¢2(X)_(x+1)(x—1)_x +1
V) #(0= (;5(;)1) _ ((Xj-_l? Cx® 32 xa
PRI cok (x8-1) 2
(Vi) gs(x)= AR )BX) (X +1)(X—1)(x2 +x+1) X“—x+1
(Vii) dy(x) = S RN ¢ S N ¢ S

AR (x-DxZ+x+])  (x3-1)
_03)3-1) G -1)(x°+x3+1)
3-1) 3-1)
= (x®+x3+1)

Observations made about the Cyclotomic polynomials from above discussion.
(i) These are monic polynomials with integer coefficients.

(i) Degree of ¢ (x) is ¢(n), where ¢ is Euler’s phi-function.

(ii1) ap, is a root of ¢y(x) and ¢,(x) is minimal polynomial of o.

(iv) én(x) is irreducible polynomial over field of rational numbers.

Notation. When n=p™, denote ¢p” (X)= z//(m) (x).

Lemma. For all m >1,
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m

m-1

P
W(m)(x):XmT
xP -1

1P oy (pDp™

Proof. We will prove the result by induction on m.

If m=1, then 1//(1)(x):¢p(x). Since 1 is the only divisor of p which is less than p, therefore,

X xP -1 2

P_1 (p-1) .
= =1+X+X° +...4+ X" Hence the result is true for m=1.
Aa(x) x-1

(X) =

Let us suppose that result holds for all k <m. i.e.

k
pe_ k-1

) (x) = Xk_l Lo gxP ™ x2p
p

xF -1

k-1 k-1
xR

Consider (M (x). Since y(M(x) =¢m (X) and only divisors of p™ are 1, p,...,p™" which are

less than p™, therefore,

m

xP -1 _ xP" 1
A ). Fma () (x=y P (x)..p M (x)

Since by induction hypothesis,

¢pm (X)=

2 m-1
xP-1xP -1 xP -1 m
e =X —1, therefore,

-y D ). ™D (x) = (x-1)

p™ _ 1 -1 -1
y/(m)(x)z);Tllzlerpm X2 xR
X -1

It proves the result.

5.5.5 Theorem. For any prime p and non-negative integer m, the polynomial W(m)(x) is irreducible in
QIx].
Proof. Clearly z//(m)(x)is a monic polynomial of degree ¢(p™= (p-1)p

m-1

with integer

coefficients. Further

]
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1 xP" W1 m-1
y M= 7L )T @e™ )
X -1 X -1

Let f(x) and g(x) are two polynomials with integer coefficients, define f(x)=g(x) mod p if

f(x)=g(x) + pr(x), where r(x) is polynomial with integer coefficients.
-1 . .
Now (f(x)+g(x))"=f(x)P +(p2 pc, FO)P™9()") +g(x)P. Sincepc, =0 mod p, therefore,
i=1
(f()+g(x))? =f(x)° +g(x)” mod p. Further, for every positive integer a, by Fermat Theorem, a” = a

n
mod p. Hence if f(X)= aix', then f(X)P = z(a )PxPl = za (xP)' =f (xP)modp.
i=0

k k
Proceeding in the same way we get f(x)P =f(x? )modpfor all non-negative integers

By (1), (M (x)= 1,y(1)(xIO ), therefore,

(x+l) —1))|Oml
(x+1-1)

1+px+p(p2 Dy2y xP-1 -

=( )P

X

(x +1) —l))pm -1

yOx+2)P" = S

— x(P-Dp"™" modp =™ (x+1) modp.
Hence l//(m) (x+1) = — x(P-Dp"™ +pr(X) r(x) is the polynomial with integer coefficients. As by
Lemma 5.5.4,
M D) =14 (P +x+D)P" 4+ (x4 PO
Therefore, /(™ (0+1)=p. i.e. constant term of (™ (x+1)is p.
Now we have a prime p such that p divides every coefficient of (,//(m) (X+1) except the leading
coefficient and p? does not divides the constant coefficients of z//(m) (x+1) . Hence by Eisenstein

Criteria of irreducibility z//(m) (x+2) is irreducible over Q.

]
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55.6 Theorem. For every integer n>1, ¢h(x):(X—H(l))(x—e(z))...(X—9(¢(”))), where

oD, 6@ . 9»M) are the p(n) distinct primitive nth root of unity.
Proof. We will prove the result by induction on n.

If n=1, then ¢ (X)=(X-1). Since 1 is the only first root of unity, therefore, result is true in this
case.

Suppose that the result is true for all m < n. Therefore, if d | n, d < n, we have
By (X) :(x—Qd(l))(x—éd(z))...(X—Qd((/’(d))) where Hd(i) are primitive d™ root of unity. Now,

X" —1=(X—g)(X=¢2)...K—=c1) ; 61, S2...., G are all nth roots of unity. If we separate
all primitive n th roots of unity, we get

X" —1=(x—0W)(x—0)...x— 6P Myy(x)
Where v(x) is the product of all other (X—g¢;j). Thus by our induction hypothesis v(x) is the
product of the ¢(x) over all the divisors d of n, d=n. i.e. i.e. V(X)= d];[r?d(x). Then

d#n

x"-1 _ (x=0gY)(x—04Y)....c~ 03 D)v(x)
d1/1n¢d (x) v(X)

d=n

on(X) =

=(X —ed(l))(x —Gd(z)). (X —Hd(¢(d))) . It proves the theorem.

5.5.7 Theorem. For every positive integer n, the polynomial ¢(x) is a monic polynomial with integer
coefficients of degree ¢(n), ¢ is the Euler’s ¢- function.
Proof. Since ¢h(x):(X—Q(l))(x—e(z))...(x—@(‘/’(n))), therefore, its degree is ¢(n). We now
apply induction on n to show that it is a polynomial with integer coefficient.

If n=1, then @ (X)=(Xx-1)i.e. for n=1, ¢ (X) is a polynomial with integer coefficient.
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Suppose that result is true for all m < n. i.e. @y(X) is the polynomial with integer

coefficient.
n
Since ¢n(X) = H¢ ( y By induction assumption, dl;[cl)d(X) is a monic polynomial with
n
d=n
d;tn

integer coefficient. If we divide the polynomial x"-1 by T1dg(X), then it is a monic polynomial
d/n
d=n

with integer coefficients. Hence ¢, (X)is a monic polynomial with integer coefficients.

Theorem. For every positive integer n the polynomial ¢, (X)is irreducible over the field of
rational numbers.

Proof. Let f(x) be an irreducible factor of the polynomial ¢,(X)in Q[x]. We will show that f(x)=
& (X). Let if possible ¢, (X)=f(x), then ¢, (X) =Ff(x)g(x) for polynomial g(x). Since ¢, (X)has no
multiple roots and is monic polynomial, therefore, ged(f(x), g(x))=1.

Let p be a prime number such that p does not divide n. If 0 is a root of f(x) then 6 is also
root of ¢, (X), therefore, 0 is primitive nth root of unity. By our choice on p, 0° is also primitive
n th root of unity. Now we will show that 6° is a root of f(x). Let if possible 6° is not a root of
f(x). Then it will be root of g(x). But then 0 is root of g(6). Since f(x) is irreducible polynomial,
therefore, it is minimal polynomial of 0. Hence f(x)| g(6°). But g(x")=g(x)’ mod p, then f(x)|
9(0)".

Let t(x)=ag+aix+ax*+...+a,x" be a polynomial in Z[x]. Identify t(x) in Zy[x] by
t(x)=ag +alx+a3x2 +...+3X", where 3jis residue of a; (mod p). Then it is homomorphism
from Z[x] onto Z,[x].

Since all the polynomials ¢, (X), v(x), f(x) and g(x) lies in Z[x], Let ¢, (X), V(X)

, f(x)and G(x) are their respective images in Zy[x]. If t(x)=ag+aix+ax’+...+ax" and r(x)=

]
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m+n :
botbax+byx?+...+bnx™ are two polynomials then t(X)r(x)= 3. Cix', where Cj= X ajbk.
i=0 jrk=i

Since aj=d;p+a; and by =eyp+by, therefore,
ajbk =djekp2 +(§.jek +5kdj)p+éj5k.
But then ajby :éjﬁk. Hence we can identity t(x)r(x) by t(x)r(x) in Zy[x].

Hence (X" —1) = ¢h () V(X), ¢h(x)=F(x)g(x) and F(x)|g(x)".

Therefore, f(X) and @(X) have common root in some extension of Z,. Now

(X" =) =g, (X)V(x)= F(X)g(X)V(X), hence a, as a root of both f(x) and g(x), is a multiple
root of x"-1. Since derivative (x"-1) of x"-1is nx"*-1 =0, since p does divides n; therefore, (x"-
1) is relatively prime to p. Hence (x"-1) can not have a multiple root. With this contradiction, we
say that whenever 0 is a root of f(x) , then so must 6° be one for any prime p that does not divide
n.

Repeating this argument, we arrive at: 0" is a root of f(x) for every r that does not divide
n. But 0 as a root of f(x), is also a root of ¢, (X) and hence is a primitive n™ root of unity. Thus 6"

is also a primitive nth root of unity for every r relatively prime to n. By running r over all the

number which are less than n and relatively co-prime to n, we get every primitive root of unity is
also a root of (x). Hence ¢ (X)=f(x), therefore, ¢,(X)is irreducible over Q. It proves the

theorem.

FINITE FIELDS.

Definition. Field F is called finite field if it has finite number of elements. For example, set {0, 1,

2, ..., p-1} is a field under addition and multiplication modulo p. It has exactly p elements.

Lemma. If F is a finite of order g, then an extension K of F; [K:F]=n, has q" elements.

]
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Proof. Since extension K of F is a vector space with dimension n over F. Let vy, vy, ..., vo be a
basis of K over F. Then elements of K are of the form oyVi+ azVi+ aoVot...+ anVy ; i €F. Since

each a; has q choice, therefore, number of elements in K are q".

Corollary. If F is a finite field, then F has p™ elements where p is the characteristic of F.
Proof. If F is prime field with characteristic p then it has exactly p elements. F is not a prime
field, then F has a prime subfield P having exactly p elements. Since F is an extension of P,

therefore, by Lemma 5.6.2, F has p™ elements.

m
Corollary. If the finite field has p™ elements then every acF satisfies aP =a.

Proof. If a=0, then the above result is trivial. If a0, then the set of all onzero elements form

. i pm_l ; pm
group under multiplication. Hence a =1. Equivalently a¥ =a.

m
Lemma. If the field F has p™ elements then the polynomial xP" —x in F[x] factors in F[x] as

xP" _x = I1(xX—P).
BeF

Proof. Since the characteristic of field F with p™ elements is p, therefore, derivative f'(x) of
P e aMyPp™-1 .
f(x)=x" —Xxis p "X —1=-1+#0. Hence all the roots of f(x) are distinct. Further, by
m
corollary 5.4.4, each element of F is a root of f(x). Hence xP —x= [1(x—p).

peF

m
Corollary. If the field has p™ elements, then F is the splitting field of polynomial xP  —x.
Proof. Result follows by Lemma 5.6.5 and using the fact that no field smaller than F can contain
all the roots of f(x).

Lemma. Any two finite fields having same number of elements of elements are isomorphic.
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Proof. Let the two finite fields F and K have p™ elements. Then By Corollary 5.4.6, these two

m
fields are splitting of the polynomial xP" —x. We know that any two splitting field of the same

polynomial are isomorphic (can be easily proved), therefore, F and K are isomorphic.

Lemma. For every prime p and every positive integer m there always exist a field of order p™

elements.

Proof. Consider the polynomial x'Dm =X in Zy[Xx]; Z, is field of integers under addition and
multiplication modulo p. Let K be the splitting field of XIOm —X. In K let F:{aeKlaIDm =a}.
Clearly elements of F are the roots of the polynomial XIDm —X. Since all the roots of xIom -X
are distinct, therefore, F has p™ elements. Further for a and b belonging to F we have apm =a

m m m
and bP" =b. Then (ab)P =aP bP =ab, therefore, abeF. Since the characteristic is p,

m m m
therefore, (a£h)? =aP +bP =a+b. Hence F becomes a subfield of K. Therefore, we

always have a field of order p™.

Theorem. For every prime p and every positive integer m there exist a unique field of order p™
elements.

Proof. Proof follows by Corollary 5.6.7 and Lemma 5.6.8.

Lemma. If G is a finite abelian group with the property that the relation x"=e is satisfied by at
most n elements of G, for every integer n. Then G is cyclic group.

Proof. Since G is finite abelian group of order n= pflp%

write G= Splsz..SIOr as the direct product of Sylow p; subgroup of G i.e. every element geG

Oy . . . .
2..py"; pi’s are distinct primes, we can

can be written in a unique way as g=sS,... sr, Sj eSpi . If each Spi is a cyclic subgroup of G

generated by a; then a=a;a,...a.. Let a"=e. Then af"aJ'..a]" =e. Now using the fact that each

element of G has unique representation, in particular e has unique representation. Hence a{“ =e

]
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for 1 <i <r. But then p;"i divides m. Since p; are distinct primes, therefore, p1p52..pf" = o(G)
divides m. Hence o(G)=m.

Therefore, G will be cyclic if each Spi is cyclic. i.e. in order to show that G is

cyclic it is sufficient to show that each p group is cyclic, p is prime. Let H be a group of some

prime power. Let a is an element of H whose order is as large as possible. Definitely its order is
p" for some positive integer r. More over if a'=a' for i >j, 0<i,j<p' —1, then a'=e. Since the

1

27-"5ap B

order of a is p" > i-j, a”=e only when i=j. Hence all the elements €,a,a are distinct.

r
Further all these elements are the solutions of the equation xP =e, As by our hypothesis

2

r r
xP =e has at most p" distinct solution, therefore, €,a,a ,...,ap _1are the only solutions of

r . . . r S IS
xP' =e. Now if beH, its order is p° where s < r and b? =(bP )P " =e. Then, by the

discussion made above, b=a' for some i. So every element of H is some power of a, therefore,

H is cyclic. Hence G is cyclic.

5.6.11 Theorem. Let K be a field and G be a finite subgroup of the multiplicative group of non-zero
elements of K. Then G is cyclic.
Proof. Since K is a field and the multiplicative group of K is abelian. Further for any integer n,
equation x"-1 has at most n root in K and so at the most n roots in G. The hypothesis of Lemma

5.6.10 is satisfied. Hence G is cyclic.

5.7 CHECK YOUR PROGRESS

Q(i) Discuss and read about automorphism on a field.

Q (ii) Discuss the Theorem 5.3.3 by an example.

Q (iii) Find a field which contains all the nth root of unity, where n < 5.
Q (iv) Write the elements of finite field of order 9

]
DDE, GJUS&T, Hisar 112 |



ALGEBRA MAL-511

58 SUMMARY

In this chapter, perfect fields, Galois Theory, solvability by radicals, Cyclotomic polynomials and

finite fields are studied.

5.9 KEYWORDS

Galois group, radicals, perfect field, finite fields

5.10 SELF-ASSESSMENT TEST

(1) Prove that ¢, (X)is the minimal polynomial in Q[x] for the primitive n™ root of unity; Q is the

field of rational numbers.
(2) Show that the multiplicative group of non-zero elements of a finite field is cyclic.
(3) Find the Galois group of the following polynomials:

x?+1, x3-2 and x*-2.

5.11 ANSWERS TO CHECK YOUR PROGRESS

Answer to Q(iii) Q(w, i,n), where Q is the field of rational numbers, w is a primitive cube root of

unity, i is a primitive forth root of unity and 7 is a primitive 5™ root of unity.
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