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MAL-511: M. Sc. Mathematics (Algebra) 

Lesson No. 1                                                              Written by Dr. Pankaj Kumar 

                                                                                 Vetted by Dr. Nawneet Hooda 

Lesson: Subnormal and Normal series                    
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1.0  LEARNING OBJECTIVE: The learning objective of this Chapter is to study some 

properties of groups by studying the properties of the series of its subgroups and factor groups.  

 

1.1 INTRODUCTION: Since groups and their subgroups have some relation, therefore, in 

this Chapter we use subgroups of given group to study subnormal and normal series, refinements, 

Zassenhaus lemma, Schreier’s refinement theorem, Jordan Holder theorem, composition series, 

derived series, commutator subgroups and their properties and three subgroup lemma of P. Hall. 
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In Section 1.2, we study subnormal and normal series. It is also shown that every normal series is 

a subnormal but converse may not be true. In Section 1.3, we study Zassenhaus Lemma and 

Schreier’s refinement theorem. In Section 1.4, we study composition series and see that an 

abelian group has composition series if and only if it is finite. We also study Jordan Holder 

theorem which say that any two composition series of a finite group are equivalent. At the end of 

this chapter we study some more series namely Chief series, derived series and their related 

theorems. 

1.2 SUBNORMAL AND NORMAL SERIES 

1.2.1 Definition (Sub-normal series of a group). A finite sequence 

  G=G0G1G2… Gn=(e)  

 of subgroups of G is called subnormal series of G if each Gi is a normal subgroup of Gi-1 for each 

i, 1i  n. 

 

1.2.2 Definition (Normal series of a group). A finite sequence 

  G=G0G1G2… Gn=(e)  

 of subgroups of G is called normal series of G  if  Gi is a normal subgroup of G  for each i, 1 i  

n. 

  

Example. Let G ={1, -1, i, -i} where i
2
=-1, is a group under ordinary multiplication. Consider the 

sequence; 

  {1, -1, i, -i}=G0 {1, -1}= G1 {1}=G2  

This is normal as well as subnormal series for G. 

 

1.2.3 Theorem. Prove that every normal series of a group G is subnormal but converse may not be 

true.  

 Proof. Let G be a non-empty set and  

  G=G0G1G2… Gn=(e)   (*) 
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be its normal series. Then each Gi is normal in G for 1 i  n. i.e. for every giGi and for every 

gG, we have (gi)
-1

 g giGi.  Since Gi  Gi-1  G. Hence for every giGi and for every gi-1Gi-1, 

we have (gi-1)
-1

 gi gi-1Gi i.e. Gi is normal in Gi-1. Hence (*) is subnormal series for G also. 

     For converse part take G = S4, symmetric group of degree 4. Then the sequence 

   S4= G0  A4 = G1 V4=G2 {(1 2)(3 4), e}= G3 (e)= G4. 

where A4  is the group of all even permutations, V4 ={ I, (1 2)(3 4), (1 3)(2 4) ,   (1 4)(2 3)}. For 

showing that it is subnormal series we use following two results: 

(i) We know that if index of a subgroup H of G is 2 then it is always normal in G.  

(ii) Take α
-1
α,  α  and  are permutations from Sn, then cyclic decomposition of permutations α

-

1
α and  remains same. For example, cyclic decomposition of α

-1
 (1 2)(3 4) α  is always 22 

form.  Similarly cyclic decomposition of           α
-1

 (1 2 3)(4 6) α  is always 32.  In other words 

we cannot find α in Sn such that α
-1

 (1 2)(3 4) α=(1 2 3)(4 6).  

Now we prove our result as:  

Since index of G1(= A4) is 2 in G0( = S4), by (i) G1 is normal in G0. Since G2(=V4) contains all 

permutations of the form (a b)(c d) of S4, therefore, by (ii) G2 is normal in G1. By (i) G3(={(1 2)(3 

4), e} is normal in G2. Trivially G4(=e) is normal in G3. Hence above series is a subnormal series. 

   Consider (1 2 3 4)
-1

 (1 2)(3 4)(1 2 3 4)= (1 4 3 2)(1 2)(3 4)(1 2 3 4)  =(1 4)(2 3)G3. 

Hence G3 is not normal in S4. Therefore, the required series is subnormal series but not normal. 

 

1.2.4 Definition (Refinement). Let G=G0G1G2… Gn=(e)  be a subnormal series of G. Then a 

subnormal series G=H0H1H2… Hm=(e) is called refinement of G if every Gi is one of the 

Hj’s. 

  Example. Consider two subnormal series of S4 as: 

    S4 A4  V4 (e) 

  and   S4  A4  V4  {(1 2)(3 4), e} (e).  

  Then second series is refinement of first series.  

 

1.2.5  Definition. Two subnormal series 

                G=G0G1G2… Gr=(e)      
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   and                   G=H0H1H2… Hs=(e) of  G                        are isomorphic if 

there exist a one to one correspondence between the set of non-trivial factor groups  
i

1i

G

G   and 

the set of non-trivial factor groups 
j

1j

H

H 
 such that the corresponding factor groups of series are 

isomorphic.  

   

  Example. Take a cyclic group G =<a>of order 6. Then G={e, a, a
2
, a

3
, a

4
, a

5
}. Take  G1={e, a

2
, 

a
4
} and H1={e, a

3
}. Then G=G0G1={e, a

2
, a

4
}G2=(e) and                   G=H0H1={e, 

a
3
}H2=(e) are two subnormal series of G. The set of factor groups is }

G

G
,

G

G
{

2

1

1

0 and }
}e{

H
,

H

G
{ 1

1

0 . 

Then 
}e{

H

G

G 1

1

0   and 
1

01

H

H

}e{

G
 i.e. above two subnormal series of G are isomorphic. 

 

1.3 ZASSENHAUS LEMMA AND SCHEIER’S REFINEMENT 

THEOREM. 

1.3.1 Lemma. If H and K are two subgroup of G such that kH=Hk for every k in K. Then HK is a 

subgroup of G, H is normal in HK, HK is normal in K and 
KH

K

H

HK


 . 

 Proof. Since kH=Hk for every k in K, therefore, HK is a subgroup of G. Now let hkHK, hH 

and kK. Then (hk)
-1

h1(hk)= k
-1

 h
-1

h1 hk = k
-1

 h2 k. Since kH=Hk, therefore, h2 k = k h* for some 

h*H. Hence (hk)
-1

h1(hk)=k
-1

 kh*=h* H . i.e. H is normal subgroup of HK. Further H is 

normal in K also since     k
-1

hk=k
-1

kh
*
  H for all kK and hH. But then HK is normal 

subgroup in K. Therefore, by fundamental theorem of isomorphism    

KH

K

H

HK


 .    
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1.3.2 Zassenhaus Lemma. If B and C are two subgroup of group G and B0 and C0 are normal 

subgroup of B and C respectively. Then 

       
)BC(C

)BC(C

)CB(B

)CB(B

00

0

00

0









. 

 Proof. Let CBK   and )CB(BH 00  . Since B0 is normal in B, therefore, every element of 

B commutes with B0.  Further K  B, therefore,   every element of K also commutes with B0. 

Also C0 is normal in C, therefore,  BC0 is normal in BC=K. Hence every element of K also 

commutes with BC0. By above discussion 

 Hk= kH)CB(kB)CB(kBk)CB(B 000000  .  

 i.e. we have shown that Hk=kH for every k in K. Then by Lemma 1.3.1,    

KH

K

H

HK


       (1) 

 Now we will compute HK and HK. 

Since )CB()CB( 0  , therefore, HK= )CB)(CB(B 00   = )CB(B0  .   

Further, let yHK then yH and  yK. Now y )CB(BH 00   y=b0b where b0 

B0, b )CB( 0 .  Let b0b =d for d CBK  . Then Cd . Since )CB( 0  C, therefore, b 

also belongs to C.  

  Now b0b=d  b0 = d b
-1

. Since b, Cd , therefore, d b
-1

=b0 also belongs to C. Hence 

)CB(b 00  . Then )CB)(CB(bb 000  . Hence HK )CB)(CB( 00  .  

 On the other side,  

  K)CB)(CB(K)CB(,K)CB( 0000  .  

 Since 00 B)CB(  , therefore,  H)CB(B)CB)(CB( 0000  . Hence 

KH)CB)(CB( 00  .  

 On putting the values of H, K, HK and HK in (1) we get,  

   
)CB)(CB(

)CB(

)CB(B

)CB(B

0000

0









  (2) 

 On interchanging role of B and C, we get 
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)BC)(BC(

)BC(

)BC(C

)BC(C

0000

0









  (3)  

 Since )CB( 0  and )CB( 0  are normal subgroup of CB , therefore, 

)CB)(CB()CB)(CB( 0000  . Hence right hand side of (2) and (3) are equal and hence 

)BC(C

)BC(C

)CB(B

)CB(B

00

0

00

0









.  

  

Note. This theorem is also known as butterfly theorem. 

 

1.3.3 Theorem. Any two subnormal series of a group have equivalent refinements. This result is 

known as Scheier’s theorem. 

 Proof. Consider the subnormal series  

   G=G0G1…Gs={e},  (1) 

G=H0H1…Ht={e}   (2) 

of a group G. Since Gi+1 is normal in Gi and (GiHj) is a subgroup of Gi, therefore, Gi+1(GiHj)= 

(GiHj) Gi+1 i.e. Gi+1(GiHj) is a subgroup of G. Define, 

Gi,j=Gi+1(GiHj); 0i s-1, 0 j t.  

Similarly define, 

   Hk,r=Hk+1(HkGr); 0 k t-1, 0  r  s.  

As Gi is normal in Gi and Hj+1 is normal in Hj, therefore, (GiHj+1) is normal in (GiHj).  Since 

Gi+1 is normal in Gi+1 , therefore, Gi+1(GiHj+1) is normal in Gi+1(GiHj). 

Now by use of (1) and (2) we get, Gi, 0 = Gi+1(GiH0) = Gi+1Gi = Gi  and  Gi, t = 

Gi+1(GiHt) = Gi+1Gs = Gi+1. 

Hence we have a series  

G= G0 = G0,0  G0,1  = G0,2  …  G0,t =G1= G1,0  G1,1  = G1,2  …  G1,t =G2= G2,0  

G2,1  = G2,2  …  G2,t =G3= G3,0  G3,1  = G3,2  …  G3,t =G4= G4,0  …  Gs-1  = Gs-1,0 Gs-

1,2  …  Gs-1,t =Gs.   (3) 
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Since each Gi for 0 i s occurs in subnormal series (3), Hence (3) is a refinement of subnormal 

series (1).  

Similarly, series 

H= H0 = H0,0  H0,1  = H0,2  …  H0,s =H1= H1,0  H1,1  = H1,2  …  H1,s =H2= H2,0  

H2,1  = H2,2  …  H2,s =H3= H3,0  H3,1  = H3,2  …  H3,s =H4= H4,0  …  Ht-1  = Ht-1,0 Ht-

1,2  …  Ht-1,s =Ht.  (4) 

is a refinement of subnormal series (2). Clearly both the series in (3) and (4) have st+1 term. 

Since each Gi+1 is normal in Gi and Hj+1 is normal in Hj, therefore, by Zassenhaus Lemma 

)HG(H

)HG(H

)HG(G

)HG(G

j1i1j

ji1j

1ji1i

ji1i

















i.e. 

1i,j

i,j

1j,i

j,i

H

H

G

G



  Thus there is a one–one 

correspondence between factor groups of series (3) and (4) such that corresponding factor groups 

are isomorphic. Hence the two refinements are isomorphic. 

1.4 COMPOSITION SERIES. 

1.4.1 Definition (Composition series). A subnormal series  

    G=G0G1G2… Gr=(e)  

  of group G is called composition series if for 1 i  r , all the non trivial factor groups 
i

1i

G

G   are  

simple. The factor groups of this series are called composition factors. 

  

Example. Let G={1, -1, i, -i}; i
2
=-1 be a group under multiplication, then              {1,-1,i, -i}{1, 

-1}{1} is the required composition series of G. 

 

1.4.2 Lemma. Every finite group G has a composition series. 

Proof. Let o(G) =n. We will prove the result by induction on n. If n=1. Then the result is trivial. 

Suppose that result holds for all groups whose order is less than n. If G is simple, then 

G=G0G1={e} is the required composition series.               
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If G is not simple than G has a maximal normal subgroup H say. Definitely o(H)<n. Then, 

by induction hypothesis H has a composition series H=H0H1H2… Hs=(e) where 
j

1j

H

H 
is 

simple factor group. Now consider the series GH=H0H1… Hs=(e). Since H is maximal 

normal subgroup, therefore,  
H

G
 is simple factor group. Further each 

j

1j

H

H 
 is simple factor 

group; therefore, above series is composition series of G. Hence the result follows.  

 

1.4.3 Lemma. If G is a commutative group having a composition series then G is finite  

 Proof. First we study the nature of every simple abelian group H. Since H is abelian, therefore, 

each subgroup of it is normal. Since G is simple, therefore, it has no proper normal subgroup. But 

then G must be a group of prime order. Further we know that every group of prime order is cyclic 

also. Hence every simple abelian group H is cyclic group of prime order. We also know that 

every subgroup and factor group of an abelian group is also abelian. Now let  

G=G0G1G2… Gr=(e)  

 be a composition series of G. Then each non-trivial factor group 
i

1i

G

G  is simple. As G is abelian, 

therefore, 
i

1i

G

G  is abelian simple group. Hence by above discussion order of 
i

1i

G

G   is prime i.e. 

o(
i

1i

G

G  )=pi. Since 1r
r

1r G
G

G


   and o(
r

1r

G

G  )=pr , therefore, o( 1rG  )=pr.  

Further pr-1= o(
1r

2r

G

G



 ) = 
)G(o

)G(o

1r

2r



  = 
r

2r

p

)G(o  , therefore, o(Gr-2)  =prpr-1. Continuing in 

this way, we get o(G)=p1… prpr-1. Hence G is finite. 

 

1.4.4 Theorem. If group G has a composition series then prove that  

 (i) Every factor group has a composition series 

 (ii) Every normal subgroup of G has a composition series  

 Proof. Let 
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    G=G0G1G2… Gm=(e)     (1) 

  be the composition series of group G. Then each factor group 
1i

i

G

G


is simple for all i,  0  i  m-

1 .  

  (i) Let H be normal subgroup of G. Consider the quotient group 
H

G
. Since HG (H is normal in 

G), therefore, HGi is a subgroup of G containing H and  H HGi. Further HG and Gi+1  Gi, 

therefore, HGi+1  HGi and hence 
H

HG

H

HG i1i  .   

   Consider the series 
H

HG

H

G 0 
H

HG1 
H

HG2 … H
H

HGm   (2) 

  By above discussion it is a subnormal series of 
H

G
.  

  Define a mapping 
1i

i

1i

i

HG

HG

G

G
:f



  by f(aGi)= aHGi+1 where a Gi.  

    This mapping is well defined since aGi+1= bGi+1  ab
-1
Gi+1. Since  Gi+1  HGi+1, 

therefore, ab
-1
HGi+1. Hence aHGi = bHGi.  

    This mapping is homomorphism also since f(abGi)= abHGi = aHGi .bHGi= 

f(aGi)f(bGi).  

    Since for xHGi+1 
1i

i

HG

HG



 where x  HGi =GiH, we have x= gh for some gGi 

and hH. Then xHGi+1=ghHGi+1= gHGi+1 = f(gGi+1). This mapping is onto also. 

    Now by fundamental theorem of homomorphism, 
1i

i1i

i

HG

HG

fker

G

G



  . Further we 

know that Ker f is always a normal subgroup of   
1i

i

G

G


. But 

1i

i

G

G


 is simple, therefore, Ker f =
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1i

i

G

G



 or 
1i

1i

G

G



 =Gi+1 (identity of 
1i

i

G

G



). Then 
1i

i

1i

i

1i

i

1i

i

G

G

G

G

G

G

fker

G

G





   or 
1i

i

1i

1i

i

1i

i

G

G

G

G

G

fker

G

G



  . 

Hence for every case, 
1i

i

1i

i

HG

HG

G

G



 i.e. 
1i

i

HG

HG



  is simple. But 

H

HG
H

HG

HG

HG

1i

i

1i

i



 . Therefore, 

H

HG
H

HG

1i

i


 is simple. Hence the series in (2) is a composition series for 

H

G
. 

  (ii)  H is subgroup of G, therefore, HGi is  subgroup of G. It is also subgroup of H. Since Gi+1  

Gi, therefore, HGi+1  HGi. Let Hi=HGi. Then the series  

    H=H0 H1… Hm{e}  (3)  

  is a subnormal series for H.  

   Since Gi  Gi+1, therefore, Hi+1=HGi+1=(H(GiGi+1)=(HGi)Gi+1 =HiGi+1. Since 

we know that if A and B are subgroup of G with B is normal in G, then  
BA

A

B

AB


 ,  therefore, 

for two subgroups Hi and Gi+1 of Gi  where Gi+1  is normal in G, we have  

            
1i

1ii

1ii

i

1i

i

G

GH

GH

H

H

H










    (4) 

  Since Hi=HGi and Gi+1 Gi, therefore, HiGi+1 is a subgroup of Gi containing Gi+1. Since  H G, 

therefore, H  Gi. Hence Hi=HGi  Gi. As Gi+1  Gi, and Hi  Gi, therefore, HiGi+1 is a normal 

subgroup of   Gi. Hence 
1i

1ii

G

GH



  is a normal subgroup of 
1i

i

G

G


. But 

1i

i

G

G


 is simple, therefore, 

1i

1ii

G

GH



 =
1i

i

G

G


 or 

1i

1ii

G

GH



 =Gi+1. Now 
1i

1ii

G

GH



 = Gi+1  1iiGH  = Gi+1 and 
1i

1ii

G

GH



 =
1i

i

G

G


 

1iiGH  = Gi. Hence either 
1i

1ii

G

GH



  is trivial group or non-trivial simple group. But then by (4), 
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1i

i

H

H


 is trivial or non-trivial simple group. Hence (3) is the composition series for H. It proves 

the result. 

 

1.4.5 Theorem. (Jordan Theorem). Any two composition series of a finite group are equivalent. 

 Proof. Let       G=G0G1…Gs={e},              (1) 

G=H0H1…Ht={e}               (2) 

  be two composition series of a group G.  

   By definition of composition series it is clear that a composition series can not refined 

properly. Equivalently, if from refinement of a composition series if we omit repeated terms then 

we get the original composition series. By Scheier’s Theorem, series in (1) and (2) have 

isomorphic refinement and hence by omitting the trivial factor group of the refinement we see 

that the original series are isomorphic and therefore, s=t. 

  

  Example. Let G be a cyclic group of order 18. Find composition series for G 

  Solution. Let G=<a>. Then order of a is 18. As G is abelian, therefore, every subgroup of G is 

cyclic. Consider G1=<a
2
>={e, a

2
, a

4
, a

6
, a

8
, a

10
, a

12
, a

14
, a

16
} G2=<a

6
>={e, a

6
, a

12
}, G3={e}. 

Consider the series:  

    G=G0G1G2G3={e}. 

  The orders of 
1

0

G

G
, 

2

1

G

G
, 

3

2

G

G
 are 2, 3 and 3 respectively, which are prime numbers. Therefore, 

factor groups of above series are simple and hence it is a composition series for G. 

   Similarly, by taking, G=H0=<a>, H1=<a
3
>={e, a

3
, a

6
, a

9
, a

12
, a

15
}, H2=<a

6
>={e, a

6
, a

12
}  

and H3={e}, we get the factor groups 
1

0

H

H
, 

2

1

H

H
, 

3

2

H

H
 are 3, 2 and 3 respectively. Hence series 

    G=H0H1H2H3={e} 
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   is also a composition series for G. Further, it is easy to see that 
2

1

1

0

G

G

H

H
 , 

1

0

2

1

G

G

H

H
  and 

3

2

3

2

G

G

H

H
 . Similarly we see that by taking G=H0=<a>, H1=<a

3
>, H2=<a

9
> and H3={e} gives us 

another composition series for G. 

   

  Example. Show that if G is a group of order p
n
, p is prime number. Then G has a composition 

series such that all its composition factors are of order p. 

  Solution. Let G=G0G1…Gs={e} be the composition series for G. Since o(G)=p
n
, therefore, 

order of every subgroup of G is some power of p. But then order of each composition factor 

i

1i

G

G   is p
i
, i<n. If i>1, then 

i

1i

G

G   has a non trivial centre, contradicting that 
i

1i

G

G   is simple. 

Hence k=1 i.e. each composition factor is of prime order. It proves the result.  

   

1.5  COMMUTATOR SUBGROUP. 

1.5.1 Definition (Commutator) Let G be a group. The commutator of the ordered pair of elements x, 

y in the group G is the element x
-1

y
-1

x y. It is denoted by [x, y]. Similarly if H and K are two 

subgroups of G, then for hH and kK, [h, k] is the commutator of ordered pair (h, k).  

 

1.5.2 Commutator subgroup. Let G be a group. The subgroup 
'G  of G generated by commutators of 

G is called the commutator subgroup of G i.e. 
'G = {[x, y]| x, y G}. It is also called the derived 

subgroup of G. Similarly [H, K]             = <[h, k] > denotes the commutator subgroup of H and 

K. 

  Note. If x[H, K], then x= 


n

1i
ii

i]k,h[ where hiH, kiK  and 1i  .  

    Since [h, k]=h
-1

k
-1

h k= (k
-1

h
-1

k h)
-1

 =[k, h]
-1
[K, H] for all hH and kK, 

therefore, [H, K]  [K, H]. Similarly [K, H]  [H, K].  Hence  [H, K]= [K, H].  
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    We also define [x, y, z]=[[x, y] z]. In general [x1, x2,…, xn-1, xn]= [[x1, x2,…, xn-1] 

xn]= [[[x1, x2,…,xn-2] xn-1] xn] =….=[…[x1, x2]… xn-1] xn].  

  

1.5.3 Theorem. Let G be a group and 'G  be its derived group then the following holds 

  (i) 'G  is normal in G. 

  (ii) G/ 'G  is abelian 

  (iii) If H is normal in G, then G/H is abelian if and only if 'G H. 

  Proof. (i) Since y
-1

x y = xx
-1

y
-1

xy =x[x, y]   y G and x 'G . Since x and [x, y]  'G , 

therefore, x[x, y]= y
-1

x y  'G . Hence 'G is normal in G. 

  (ii) Since [x, y]=x
-1

y
-1

xy
'G for all x and yG, therefore, x

-1
y

-1
xy

'G =
'G . Equivalently xy

'G = 

'G yx. Hence '''' xGyGyGxG  . As 'xG and 'yG  are arbitrary element of  G/ 'G ,  therefore, G/

'G  is abelian. 

  (iii) As  G/H is abelian  

    iff      xH yH=yH xH  xH and yH  G/H  

    iff      x
-1

y
-1

xyH=H 

    iff      [x, y] H   

    iff      
'G H. 

   

  Example. Let G be a group and x, y and z are arbitrary elements of G then  

   (i)[xy, z]=[x, z]
y
 [y, z] 

   (ii) [x, yz]=[x, z][x, y]
z
  

   (iii) [x,z
-1

,y]
z
 [z,y

-1
,x]

y
 [y,x

-1
,z]

x
 =e where [x, z]

y
=y

-1
[x, z]y. 

  Solution. (i) L.H.S = [xy, z]= (xy)
-1

z
-1

xyz = y
-1

x
-1

z
-1

xyz = y
-1

x
-1

z
-1

x zz
-1

yz           = y
-1

x
-1

 z
-1

xzyy
-

1
z

-1
 yz = y

-1
[x, z]y[y, z]= [x,z]

y
 [y,z]=R.H.S. 

   (ii) It is easy to show 

  (iii) Since [x, z
-1

, y]
z  

=z
-1

[x, z
-1

, y]z = z
-1

[[x, z
-1

], y]z   
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              = z
-1

[x, z
-1

]
-1

 y
-1

[x, z]yz  

              =z
-1

(x
-1

( z
-1

)
-1

 x z
-1

)
-1

 y
-1

(x
-1

( z
-1

)
-1

 x z
-1

)yz  

              = z
-1

zx
-1

 z
-1

x y
-1

x
-1

 z x z
-1

yz  

              =x
-1

 z
-1

x y
-1

x
-1

 z x z
-1

yz             (1) 

  Similarly  [y, x
-1

,z]
x
 = y

-1
 x

-1
y z

-1
y

-1
 x y x

-1
zx   (2) 

  and           [z, y
-1

,x]
y
= z

-1
 y

-1
z x

-1
z

-1
 y z y

-1
x y   (3).  

  Hence by use of (1) , (2) and (3) we get that L.H.S is  

  [x,z
-1

,y]
z
 [z,y

-1
,x]

y
 [y, x

-1
,z]

x
  

  = x
-1

 z
-1

x y
-1

x
-1

 z x z
-1

yz z
-1

 y
-1

z x
-1

z
-1

 y z  y
-1

x y    y
-1

 x
-1

y z
-1

y
-1

 x y x
-1

zx  

  =e =R.H.S.  

1.5.4 Theorem. Prove that group G is abelian if and only if 'G ={e} 

  Proof. Let G be an abelian group, then for x and y in G, [x, y]= x
-1

y
-1

x y= x
-1

x y
-1

y=e. Therefore, 

'G ={e}. 

   Conversely, suppose that 
'G ={e}, then for arbitrary x and y in G, [x,y] 

'G i.e. [x, 

y]={e}. Hence x
-1

y
-1

x y =e. But then xy=yx. Hence G is abelian. 

 

1.5.5 Example. Find commutator subgroup of S3; symmetric group of degree three. 

  Solution. Let G= S3,={I, (1 2), (1 3), (2 3), (1 2 3), (1 3 2)}.  Then for x and y in G, [x, y]= x
-1

y
-

1
x y. We know that every cyclic of odd(even) length is even(odd) permutation, inverse of an 

odd(even) permutation is always an odd(even)  permutation and product of odd(even) 

permutation with odd(even) permutation is always even permutation while product of odd(even) 

permutation with even(odd) permutation is always odd permutation. Therefore, what ever x and y 

may be [x, y] is always an even permutation. As S3 is not an abelian group, therefore, }e{S'
3  . 

Hence 3
'
3 AS  , group of all even permutation. 

 

1.5.6 Definition. Let G be a group. Define commutator subgroup '')G(  of 
'G  as the group generated 

by [x, y] where x and y are in 
'G . It is second commutator subgroup of G denoted by G

(2)
.  
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Similarly, )k(G , k
th

 commutator subgroup of G is  generated by [x, y],  x and y belongs to 

)1k(G  .  

   

  Example. (i) Find all )k(G  for G=S3, symmetric group of degree three.  

  Solution. By Example 1.5.5, 3
'

3 A)S(  . Since A3 is group of order 3, therefore, A3 is abelian. 

Hence by Definition 1.5.6, }e{)A()S( '
3

)2(
3   and hence 2k}e{)S( )k(

3  . 

   

  (ii) If G={1, -1, i, -i, j, -j, k, -k}.Then G is group under the condition that i
2
=j

2
=k

2
=-1, ij=k=-ji,  

jk=i=-kj, ki=j=-ik. The set of all commutators of G is {1, -1}.  

 

1.6 MORE RESULTS ON COMMUTATOR SUBGROUPS. 

1.6.1 Theorem. If H and K are normal subgroup of G then 

  (i) If HG (H is normal in G) then [H, K]H. Similarly if K  G then            [H, K]  K 

  (ii) If both H and K are normal in G then [H, K]  HK and [H, K]G. 

  (iii) If G  = < HK >, then [H, K]G. 

  Proof. (i) Let HG and let [H, K]=<[h, k]> , hH and kK. Since H is normal in G, therefore, g
-

1
hgH for all gG and hH.  

    As K  G, therefore, k
-1

hkH for all kK and hH.  But then [h, k]= h
-1

k
-1

hk 

H. i.e. every generator of [H, K] belongs to H. Hence         [H, K]  H. Similarly we can show 

that if K  G then [H, K]K. 

  (ii) By (i)  it is easy to see that [H, K]  HK. We have to show that            [H, K]G. Let gG 

and u[H, K]. Then u= 


r

1i

a
ii

i]k,h[ , where, hiH, kiK and 1ai  . Since  

    [h, k]
g
= g

-1
[

 
h, k]g= g

-1
h

-1
k

-1
hkg  

              = g
-1

h
-1 

gg
-1

 k
-1

 gg
-1

h gg
-1

k g  

              = (g
-1

h
 
g)

-1 
(g

-1
 k g)

-1
 (g

-1
h g)(g

-1
k g) 

               = (h
g
)

-1 
(k

g
)
-1

g(h
g
) (k

g
) 
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     = [h
g
, k

g
]. 

   As HG and KG, therefore, [h
g
, k

g
]= [h, k]

g
 [H, K]. Further [H, K] is a group, [h, k]

-g
 [H, K] 

i.e  

      [h, k]
ag
[H, K]  (*) 

  Now  g
-1

ug= u
g
=

gr

1i

a
ii )]k,h[( i


 = 



r

1i

ga
ii

i]k,h[ [H, K] (by use of (*)). 

 Hence [H, K] is normal in G. 

 (iii) Since G=<HK>, therefore, gG is of the form m1 a
m

a
1 u...u , ui  HK and 1ai  . 

Further KHu ia
i  , therefore, we can write g= m1 u...u ,         ui HK.  

  Let h, h1H, kK. Then  

   1
111

11
1

1
h hkhkhhh]k,h[h]k,h[ 1    

     = 1
1

1
1

1
11

1 kh)hkkh(hk)hh(   

    1
1

1
1

1
11

1 khhkk)hh(k)hh(     

    ]h,k][k,hh[ 11 [H, K] ]H,K[]K,H[(  ). 

 Again if hH, k, k1 K. Then  

   1
111

11
1

1
k hkkkhkk]k,h[k]k,h[ 1    

     = 1
111

1
1

1
11

1 hkkkkkhhkhk   

     = ]kk,h][h,k[ 11 [H, K] ]H,K[]K,H[(  ). 

 Thus for all h, h1 H and k, k1K,  

   1k]k,h[ and 1h]k,h[ [H, K] 

and hence 1k]k,h[  and 1h]k,h[  also belongs to [H, K]. i.e. 11ka]k,h[  and 11ha]k,h[  belongs to 

[H, K]. 

   Now gG  g=u1 u2…um, uiHK  and 

    y[H, K]  y= 


n

1i

a
ii

i]k,h[ , where hiH, kiK , n>0. 
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 Now g
-1

yg=y
g 

=
gn

1i

a
ii )]k,h[( i


= 



n

1i

ga
ii

i]k,h[ . Since m1 u...u
ii

g
ii ]k,h[]k,h[  ,  uiHK, 

therefore,  by above discussion, g
ii ]k,h[ [H, K] which further implies that ga

ii
i]k,h[ [H, K]. 

From this we get y
g
=

gn

1i

a
ii )]k,h[( i


 [H, K]. Hence [H, K] is normal in G. 

 

1.6.2 Theorem (P Hall Lemma). State and prove three subgroup Lemma of P Hall. 

Statement. If A, B, C and M are subgroup of G, MG, [B, C, A]M and     [C, A, B]M then  

[A, B, C] ]M.  

Proof. Let aA, bB and cC. Since [a, b
-1

, c]
b
[b, c

-1
, a]

c
[c, a

-1
, b]

a
=e, therefore, [a, b

-1
, c]

b
=[b, 

c
-1

, a]
-c

[c, a
-1

, b]
-a

.  (1)  

 Now by our choice  

  [c, a
-1

, b]= [[c, a
-1

] b][[C, A], B]= [C, A, B]M. 

 As M is normal subgroup of G, therefore,  

  [c, a
-1

, b] M [c, a
-1

, b]
-1 
M [c, a

-1
, b]

-a 
M

a
=a

-1
Ma=M. 

Similarly [b, c
-1

, a]
-c

 [B, C, A]  M. Now by (1), [a, b
-1

, c]
b 
M. But then  

MbMbM)]c,b,a([ 1bbb1 11

  

i.e.  

  [a,b
-1

,c]M  aA, bB, cC              (2). 

Using b in place of b
-1

 we get  

  [a, b, c]=[[a, b],c]M  aA, bB, cC       (3) 

Similarly [b, a
-1

, c]
a
[a, c

-1
, b]

c
[c, b

-1
, a]

b 
= e  

      [b, a, c]M  aA, bB, cC          (4) 

As [b, a, c] =[[b, a], c]M and [a, b]
-1

=[b, a], therefore,  [[a, b]
-1

, c] M. Now [[a, b], c] M (by( 

3)) and [[a, b]
-1

, c] M implies that             

  [[a, b]
-

, c] M , where 1                    (5) 

Let z[A, B, C]= [[A, B], C]. Then  

 z= )]c,x[(
n

1i
ii

i



, xi[A, B], ciC and 1i   (6) 



ALGEBRA  MAL-511 

DDE, GJUS&T, Hisar  20 |  

 

In particular, put xi=x, ci=c. Since x[A, B], therefore, x= )]b,a[(
n

1j
jj

j




, ajA, bjB, 1j  . 

Since [x, c]=[ )]b,a[(
n

1j
jj

j




, c] or  



n

1j

h
jj

jj ]c,]b,a[[ , hjG and by (5) ]c,]b,a[[ j
jj


M, 

therefore, [x, c] M i.e. [xi, ci] M. But then [xi, ci]
-1

 M i.e. i]c,x[ ii
   

  From (6),  z = )]c,x[(
n

1i
ii

i



M i.e. if z [A, B, C]zM. Hence [A, B, C]M. 

  Example. Show that [x, z, y
x
] [y, x, z

y
] [z, y, x

z
]=e 

  Solution. Since [x, z, y
x
]

  
= [[x, z],  y

x
] = [x, z]

-1
 (y

x 
)
-1

[x, z] (y
x 
)  

              =(x
-1

z
-1

xz)
-1

 (x
-1

yx)
-1

 (x
-1

z
-1

xz) (x
-1

yx)  

              = z
-1

x
-1

 z x x
-1

y
-1

x x
-1

z
-1

xz x
-1

yx  

              = z
-1

x
-1

 z y
-1

z
-1

xz x
-1

yx                (1), 

                [y, x, z
y
]

  
= [[y, x], z

y
] = [y, x]

-1
 (z

y
 
 
)
-1

[y, x] (z
y
 )  

              =(y
-1

x
-1

yx)
-1

 (y
-1

zy)
-1

 (y
-1

x
-1

yx)(y
-1

zy)  

              = x
-1

y
-1

 x y y
-1

z
-1

y y
-1

x
-1

 y x y
-1

z y  

              = x
-1

y
-1

 x z
-1

x
-1

 y x y
-1

z y                        (2) 

    [z, y, x
z
]

  
= [[z, y], x

z
 ] = [z, y]

-1
 (x

z
)
-1

[z, y] (x
z
)  

              =(z
-1

y
-1

z y)
-1

(z
-1

x z)
-1

(z
-1

y
-1

z y)(z
-1

x z)   

              = y
-1

z
-1

y z z
-1

x
-1

z z
-1 

y
-1

z y z
-1

x z 

              = y
-1

z
-1

y x
-1 

y
-1

z y z
-1

x z                         (3) 

  Now by (1), (2) and (3), we get L.H.S 

        [x, z, y
x
] [y, x, z

y
] [z, y, x

z
] 

          = z
-1

x
-1

 z y
-1

z
-1

xz x
-1

yx x
-1

y
-1

 x z
-1

x
-1

 y x y
-1

z y y
-1

z
-1

y x
-1 

y
-1

z y z
-1

x z                                 

                    =e =R.H.S. 

1.7 INVARIANT SERIES AND CHIEF SERIES. 

1.7.1 Definition (Invariant series) A series  

       G=G0G1… Gr{e}.  

  of subgroups of G where each Gi  G,  1 i  r, is called invariant series.  
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Example. Show that every central series is invariant but converse may not be true. 

Solution. By definition of central series, every Gi  G, therefore, every central series is invariant. 

For converse part take G=S3, symmetric group of degree 3. Consider the series  

   S3=G0G1={e}.  

Clearly it is invariant series because G1G.  But 3
1

0 S
G

G
 . As for (1 2) and     (1 2 3) S3,   (1 

2)(1 2 3)=(1 3) (2 3)= (1 2 3)(12) i.e. (1 2) does not commute with all the element of  S3. 

Therefore, 33
1

S)S(Z)
G

G
(Z  . Hence )

G

G
(Z

G

G

11

0  .  

 

1.7.2  Definition.(Chief series). A chief series of a group G is an invariant series  

   G=G0G1… Gr{e} 

  of G such that Gi-1  Gi and if  Gi-1  N  Gi  with NG, then either Gi-1=N or N=Gi. The factor 

groups  
i

1i

G

G    are called the chief factors. 

1.7.3 Note. Chief series is an invariant series that can not be defined in a non trivial manner. The chief 

factors need not be a simple group. For example take A4 and consider the series 

   A4=G0 G1=V4={I, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)}=G1{e}. 

  Then it is easy to see that each Gi  G and there is no normal subgroup of G between Gi-1 and Gi. 

But the chief factor   4
4

2

1 V
}e{

V

G

G
  which is not simple because {I, (1 2)(3 4)} is normal in V4.  

 

1.7.4 Theorem. Any two invariant series for a given group have isomorphic refinements.  

 Proof. Let the group G has two invariant series  

   G=G0G1…Gs={e},  (1) 

G=H0H1…Ht={e}   (2) 

of a group G. Since Gi+1 is normal in G and (GiHj) is a subgroup of G, therefore, 

Gi+1(GiHj)=(GiHj) Gi+1 i.e. Gi+1(GiHj) is a subgroup of G. Define, 
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Gi,j=Gi+1(GiHj); 0i s-1, 0 j t.  

Similarly define, 

   Hk,r=Hk+1(HkGr); 0 k t-1, 0  r  s.  

Since Hj+1Hj, therefore, (GiHj+1)(GiHj). But then Gi+1(GiHj+1) Gi+1(GiHj) i.e. 

Gi,j+1Gi,j. Gi is normal in G and Hj is normal in G, therefore, (GiHj) is normal in G and Hence 

Gi,j  G. Now by use of (1) and  (2) we get,  

        Gi, 0 = Gi+1(GiH0) = Gi+1Gi = Gi  and  Gi, t = Gi+1(GiHt) = Gi+1Gs = Gi+1 

Consider the series  

G= G0 = G0,0  G0,1  = G0,2  …  G0,t =G1= G1,0  G1,1  = G1,2  …  G1,t =G2= G2,0  

G2,1  = G2,2  …  G2,t =G3= G3,0  G3,1  = G3,2  …  G3,t =G4= G4,0  …  Gs-1  = Gs-1,0 Gs-

1,2  …  Gs-1,t =Gs.   (3) 

 and 

H= H0 = H0,0  H0,1  = H0,2  …  H0,s =H1= H1,0  H1,1  = H1,2  …  H1,s =H2= H2,0  

H2,1  = H2,2  …  H2,s =H3= H3,0  H3,1  = H3,2  …  H3,s =H4= H4,0  …  Ht-1  = Ht-1,0 Ht-

1,2  …  Ht-1,s =Ht. (4) 

for G. By above discussion the series (3) and (4) are invariant series and are refinements of series 

(1) and (2). Clearly both the series in (3) and (4) have st+1 terms. 

                 As Gi+1G, therefore, Gi+1  Gi. Similarly Hj+1  Hj. Hence by Zassenhaus Lemma 

)HG(H

)HG(H

)HG(G

)HG(G

j1i1j

ji1j

1ji1i

ji1i

















i.e.

1i,j

i,j

1j,i

j,i

H

H

G

G



 . Thus there is a one–one 

correspondence between factor groups of series (3) and (4) such that corresponding factor groups 

are isomorphic. Hence the two refinements are isomorphic. 

 

1.7.5 Theorem. In a group with a chief series every chief series is isomorphic to given series.  

 Proof. As by the definition of chief series every chief series is isomorphic to its refinement.  Let   

G=G0G1…Gs={e},   (1) 

and                           G=H0H1…Ht={e}                (2)  

are two chief series of group G. 
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Since Gi+1 is normal in Gi and (GiHj) is a subgroup of Gi, therefore, Gi+1(GiHj)= (GiHj) Gi+1 

i.e. Gi+1(GiHj) is a subgroup of G. Define, 

Gi,j=Gi+1(GiHj); 0i s-1, 0 j t.  

Similarly define, 

   Hk,r=Hk+1(HkGr); 0 k t-1, 0  r  s.  

As Gi is normal in Gi and Hj+1 is normal in Hj, therefore, (GiHj+1) is normal in (GiHj).  Since  

Gi+1 is normal in Gi+1 , therefore, Gi+1(GiHj+1) is normal in Gi+1(GiHj). Now by use of (1) and  

(2) we get, 

Gi, 0 = Gi+1(GiH0) = Gi+1Gi = Gi  and  Gi, t = Gi+1(GiHt) = Gi+1Gs = Gi+1 

Hence we have a series  

             G= G0 = G0,0  G0,1  = G0,2  …  G0,t =G1= G1,0  G1,1  = G1,2  …  G1,t =G2= G2,0  

G2,1  = G2,2  …  G2,t =G3= G3,0  G3,1  = G3,2  …  G3,t =G4= G4,0  …  Gs-1  = Gs-1,0 Gs-

1,2  …  Gs-1,t =Gs.   (3) 

Since each Gi for 0 i s occurs in subnormal series (3), Hence (3) is a refinement of subnormal 

series (1).  

Similarly, series 

                H= H0 = H0,0  H0,1  = H0,2  …  H0,s =H1= H1,0  H1,1  = H1,2  …  H1,s =H2= H2,0 

 H2,1  = H2,2  …  H2,s =H3= H3,0  H3,1  = H3,2  …  H3,s =H4= H4,0  …  Ht-1  = Ht-1,0 

Ht-1,2  …  Ht-1,s =Ht.  (4) 

is a refinement of subnormal series(2). Clearly both the series in (3) and (4) have (st+1) terms. 

But then by Zassenhaus Lemma series (3) and (4) are isomorphic. Since by definition of chief 

series, series (1) is isomorphic to series (3) and series (2) is isomorphic to series (4). Hence series 

(1) and (2) isomorphic. It proves the result. 

 

1.7.6 Definition. (Derived series). Let G be a group. Define 0(G)=G and  i(G)=  (i-1 (G) for each 

i1. Then 1(G)= (G). Then the series 

  G=0(G) 1(G)… r(G)={e} 

 is called derived series for G. 
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1.8 CHECK YOUR PROGRESS 

 (i) Write all normal series of G, where G is same as discussed in 1.2.2 

 (ii) Give one example of a subnormal series which is not normal 

  (iii) Write all refinements of S4 A4  V4 (e) 

  (iv)  Write the length of composition series of   *                   +, where       

              . Also write its composition series 

1.9 SUMMARY  

             This chapter contains subnormal and normal series, refinements, Zassenhaus lemma, 

Schreier’s refinement theorem, Jordan Holder theorem, composition series, derived series, 

commutator subgroups and their properties, Three subgroup lemma of P. Hall, Chief series, 

derived series and related theorems. 

1.10 KEYWORDS 

 Normal series, Subnormal series, Zassenhaus lemma, Jordan Holder theorem, Commutators etc. 

1.11 SELF-ASSESSMENT TEST 

 (1) Write all the composition series for octic group. 

 (2) Find composition series for Klein four group. 

 (3) Find all the composition series Z/<30>. Verify that they are equivalent. 

(4) If a, b are elements of a group for which a
3
=(ab)

3
=(ab

-1
)
3
=e then                  

     [a, b, b]=e. 

(5) If x, y are arbitrary elements in a group of exponent 3 then [x, y, y] =1. 

1.12 ANSWERS TO CHECK YOUR PROGRESS 

 Answer of (i) *         +   *    +  * +  

                        *         +   * +. 

Answer of (ii)          *  (  )(  )+  * + 

Answer of (iii)  

            *  (  )(  )+  * +,  

            *  (  )(  )+  * +, 
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           *  (  )(  )+  * +. 

Answer of (iv) Do yourself with the help of Example(a) and Example (b) discussed after 

Theorem 1.4.5. 
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Structure: 
2.0 Learning Objectives 

2.1 Introduction 

2.2 Central Series 

2.3 Nilpotent Groups 

2.4 Solvable groups 

2.5 Some definitions 

2.6 Finite field extension 

2.7 Prime fields 

2.8 Check your progress 

2.9 Summary 

2.10 Keywords 

2.11 Self-assessment test 

2.12 Answers to check your progress 
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2.0  LEARNING OBJECTIVE: Objective of this chapter is to study some more properties 

of groups by studying their factor group. Prime fields and finite field extensions are also studied. 

 

2.1 INTRODUCTION. In first Chapter, we have study some series. In this chapter, we study 

central series, Nilpotent groups, Solvable groups. Solvable groups have their application in the 

problem that ‘whether general polynomial of degree n is solvable by radicals or not’. Prime fields 

and finite field extensions are also studied.  
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   In Section 2.2, we study central, upper and lower central series of a group G.   It is shown 

that upper and lower central series has same length and is equal to the least length of any central 

series. 

   In Section 2.3, we study Nilpotent groups and show that every factor group and subgroup 

of Nilpotent group is again Nilpotent.  We also see every Sylow subgroup of a nilpotent group is 

normal and direct product of Nilpotent groups is again Nilpotent.  

   In Section 2.4, we study solvable groups and their properties. Next section contains some 

definitions and finite field extensions are studied in Section 2.6.  In the last Section, we study 

about prime fields and see that prime fields are unique in the sense that every prime field of 

characteristic zero is isomorphic to field of rational numbers and the fields with characteristic p 

are isomorphic to Zp=Z/<p>,   is a prime number.  

 

2.2 CENTRAL SERIES 

2.2.1 Definition (Central series). Let G be a group. Then normal series   

   G=G0G1G2… Gn=(e)  

  is central series for G if )
G

G
(Z

G

G

1i1i

i



   i  0.(i.e. all the factor groups
1i

i

G

G


 are central 

subgroup of 
1iG

G


).  

     

  Example. If G({e}) is abelian group. Then G=G0  G1={e}. Then G1 is normal in G. Further 

G
G

G

1

0  . Since G is abelian, therefore, G)G(Z)
G

G
(Z

1

 . Hence )
G

G
(Z

G

G

11

0  . It shows that G 

has a central series.  

   

2.2.2  Theorem. Prove that the series                   * +  is a central series iff  

,    -       for all            

  Proof. Let  

                      * +    (1)  
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  be given series of subgroups of a group G.  

     First we assume that it is a central series of G i.e. GiG and )
G

G
(Z

G

G

1i1i

i



 . Let x and 

y are arbitrary elements of G and Gi respectively. Then xGi+1 and yGi+1 are arbitrary elements of  

1iG

G



 and 
1i

i

G

G



respectively. Since )
G

G
(Z

G

G

1i1i

i



 , therefore, xGi+1 yGi+1= yGi+1 xGi+1 i.e. 

xyGi+1= yxGi+1 But then x
-1

y
-1

xyGi+1= Gi+1 i.e. [x, y]Gi+1. Hence the subgroup <[x, y]> =[G, 

Gi]Gi+1.  

        Conversely, suppose that [G, Gi]Gi+1. By (1), Gi+1  Gi, therefore, [G, Gi]  Gi.  Let 

x and y are arbitrary elements of G and Gi,  

     x
-1

yx=yy
-1

x
-1

yx = y[x, y]
-1
Gi  

  (because y and [x, y]
-1

 both are in Gi).  

  Hence series (1) is normal series. Since [G, Gi]Gi+1 , therefore, for xG and yGi+1  we have [x, 

y]Gi+1. Hence x
-1

y
-1

xyGi+1= Gi+1 i.e. xGi+1 yGi+1= yGi+1 xGi+1. Since xGi+1 yGi+1= yGi+1 xGi+1 

holds for all xG and yGi+1, therefore, yGi+1  )
G

G
(Z

1i
. Hence )

G

G
(Z

G

G

1i1i

i



  and the 

result follows. 

 

2.2.3 Definition (Upper central series). Let Z0(G)={e} and let Zi(G) be a subgroup of G for which  

)
)G(Z

G
(Z

)G(Z

)G(Z

1i1i

i



  for each i1. If Zs(G)=G for some positive integer s then the series  

    {e}= Z0(G) Z1(G)… Zs(G)=G  

  is called upper central series. 

   

2.2.4 Example. Show that every upper central series is also a central series. 

  Solution. Consider the upper central series {e}= Z0(G) Z1(G)… Zs(G)=G, 

)
)G(Z

)G(
(Z

)G(Z

)G(Z

1i1i

i



  for each i1. By definition, 
)G(Z

)G(Z

1i

i


 is a central subgroup, therefore, it 
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is normal in 
)G(Z

)G(

1i

i.e. g
-1

Zi(G) gi Zi(G) gZi(G)=  g
-1

gigZi(G)
)G(Z

)G(Z

1i

i



  gi Zi(G) and gG.  

Hence g
-1

gigZi(G)  gi Zi(G) and gG and hence Zi(G) is normal in G.  

   Further gZi-1(G)gi Zi-1(G)= gi Zi-1 (G) gZi-1(G) ggi Zi-1(G)= gigZi-1(G)  g
-1

gi
-1

ggi Zi-

1(G)= Zi-1(G)  [g, gi]Zi-1(G). Hence <[g, gi]>=[G, Zi(G)] Zi-1. It proves the result that every 

upper central series is a central series for G. 

 

2.2.5 Definition.(Lower central series). If we define 1(G)=G and i(G)=[i-1 , G], then the series   

               G=1(G) 2(G)… r+1(G)={e}  

  is called lower central series.  

   Since we know that G =1(G)  G. If we suppose that i-1(G)G , then for x=[gi-1, 

g]i(G); g  G and gi-1i-1(G). Now for g*G  

   (g*)
-1

[gi-1, g]g* = [gi-1, g]
g*

=[gi-1
g*

,  g
g*

]. But by induction i-1(G)G , therefore (g*)
-1

[gi-1, 

g]g*[i-1(G), G]= i(G) i.e. i(G)G for each i.  Hence above series is a normal series. 

   Further [i-1(G), G]= i(G) [i-1(G), G] i(G). Hence it is central series for G. Now we 

can say that every lower central series is also a central series. 

 

2.2.6 Theorem. If G has a central series G=G0G1G2… Gr=(e) then Gr-i  Zi(G) and Gi  i+1(G) 

for 0 i r.  

  Proof.  We will prove the result by induction on i. When i=0, then  Gr={e} , G0=G,  1(G)= G and 

Z0(G)={e}. Hence for this case Gr-iZi(G) and Gii+1(G) holds.  

   Let us suppose that result hold for all i<r i.e. Gr-i+1Zi-1(G) and          Gi-1i(G).  

   Take an element xGr-i. We will show that x lies in Zi(G). Let y G. Then [x, y] [Gr-i, 

G]= Gr-i+1.  As by induction hypothesis Gr-i+1  Zi-1(G), therefore,  [x, y] Zi-1(G). Then [x, y]Zi-

1(G)= Zi-1(G). Equivalently,   x
-1

y
-1

xyZi-1(G)=Zi-1(G) or  xZi-1(G)yZi-1(G)=yZi-1(G) xZi-1(G). It 

means that the elements xZi-1(G) and yZi-1(G) of the group 
)G(Z

)G(

1i
 commute. But y was 
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arbitrary element of G, which shows that yZi-1(G) is arbitrary in 
)G(Z

)G(

1i

 and hence xZi-1(G) is 

in the centre of 
)G(Z

)G(

1i

.  Now the centre of 
)G(Z

)G(

1i

 is 
)G(Z

)G(Z

1i

i



, by definition of upper central 

series. It then follow that xZi(G). Hence Gr-i  Zi(G).  

   For second case by induction assumption Gi-1i(G). Then i+1(G) =     [i(G), G] [Gi-1, 

G]. But by definition of central series [Gi-1, G]Gi. Hence i+1(G)Gi. 

 

2.2.7  Corollary. If G is nilpotent group then its upper and lower central series have the same length, 

and this is the least length for any central series. 

  Proof. Let G be a nilpotent group and 

    G=G0G1G2… Gr=(e) 

  be its central series of least length r. Further suppose that   {e}= Z0(G) 

Z1(G)… Zs(G)=G  

  be its upper central series and  

   G=1(G) 2(G)… t+1(G)={e}  

  be its lower central series.  

              Since Gr-iZi(G) and Gii+ 1(G) for 0 i r. For i=r, Gr  r+ 1(G). But then r+ 1(G)={e}. 

This implies that t+1 r+1.  Since every lower central series is again a central series, therefore, if 

t+1< r+1, then we get a central series of length lower then r, a contradiction. Hence t+1= r+1. 

Now we can say that length of lower central series is equal to length of central series of least 

length. 

  Further for      ,  

      G0  Zr(G)  Zr(G)=G.   

  Then      . If      ,  we get a central series (in form of an upper central series) of length less 

than  , the least length of a central series. Hence      . It proves the result. 

 

2.3 NILPOTENT GROUPS        
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2.3.1 Definition (Nilpotent group). A group G is called nilpotent group of class r if it has a central 

series of length r. i.e. if G=G0G1G2… Gr=(e) is a central series of G. 

   

  Example. Every abelian group is nilpotent group of class 1. In fact a group is abelian if it is 

nilpotent group of class 1. 

 

2.3.2 Theorem. Prove that finite p-group is nilpotent or every group of order p
n
 is nilpotent, p is prime 

number.   

  Proof. Since G is a finite p-group, therefore o(G)=p
n
 for some n1. We will prove the result by 

applying induction on n. If n=1, then o(G)=p. But every group of prime order is abelian and 

hence is nilpotent of class 1. Therefore, result holds for n=1. Suppose result holds for all group of 

order p
m

 , m<n. Let o(G)=p
n
. As p is prime which divides order of G, therefore, o(Z(G))= p

t
, 1 t 

n. As  Z(G) is normal in G, the subgroup  
)G(Z

G
has order p

n-t 
which is less than order of G. 

Then by induction hypothesis 
)G(Z

G
 is nilpotent of class at most n-t.  Let 

)G(Z

G
=

)G(Z

G0  
)G(Z

G1

  
)G(Z

G2  … )G(Z
)G(Z

G tn   where 
)G(Z

G

)G(Z

Gi   and 
)G(Z

G
]

)G(Z

G
,

)G(Z

G
[ 1ii   for all 

0 i n-t-1, be the central series for 
)G(Z

G
.  Now consider the series 

   G G1 G2 …Gn-t=Z(G)  Gn-t+1={e}. 

  Since we know that 
H

G

H

K
  iff KG containing H, therefore, 

)G(Z

G

)G(Z

Gi   implies that each Gi 

 G , 0 i  n-t-1. Gn-t is also normal in G (because centre of a group is always normal in G). 

Hence it is a normal series of G. As 
)G(Z

G
]

)G(Z

G
,

)G(Z

G
[ 1ii  , therefore, for all xGi and yG,  

)G(Z

G
)G(Z]y,x[ i (show it). Hence [x, y]  Gi+1 i.e. [Gi, G]Gi+1, 0  in-t-1.   Further for i=n-t, 
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xZ(G) and y G, [x, y]={e}. Hence {e}=[Gn-t, G] Gn-t+1. Therefore, it is required central 

series for G. 

 

2.3.3 Theorem. Let G be a nilpotent group of r, then  

  (i) each factor group is nilpotent of class  r, 

  (ii) each subgroup is also nilpotent of class  r. 

  Proof. It is given that G is nilpotent of class r, therefore, G has a central series 

       G=G0G1… Gr{e}.  

  where each GiG and [Gi-1, G]Gi, 1 i  r.  Let H be a subgroup of G, therefore, Hi=HGi is 

subgroup of G. It is also subgroup of H. Since HG and GiG , therefore,  HGi  HG. Then 

the series  

    H=H0 H1… Hr{e}  (1) 

  is a normal series for H. Now  

    [Hi-1, H]= [HGi-1, H][Gi-1, G] Gi  and  

    [Hi-1, H]= [HGi-1, H][H, H] H. 

  Hence   [Hi-1, H] GiH=Hi. Hence (*) is central series for H. It proves the result. 

  (ii) Let HG. Consider the factor group 
H

G
. Since GiG and HG , therefore, GiH=HGi G and 

contains H as its normal subgroup. Hence 
H

G

H

HGi  . Also for i=r, H
H

He

H

HGr   and for i=0, 

H

G

H

HG0  .  Since Gi  Gi-1, therefore, HGi HGi-1.  But then 
H

HG

H

HG 1ii  . Now by above 

discussion the series   

   
H

HG

H

G 0  
H

HG1 … H
H

HGr     (2) 

  is normal series of 
H

G
. Let [

H

G
,

H

HGi ] =<[xgiH, yH]>. Since for xH, xH=Hx=H, therefore, 

[xgiH, yH]=((xgi)
-1

H)(y
-1

H)(xgiH)(yH)=gi
-1

x
-1

Hy
-1 

HxgiH yH=gi
-1

H
 
y

-1
HgiHyH= gi

-1
y

-1
giyH=[gi, 

y]H=[gi, y]hH.  Now [gi, y]Gi-1 for all giGi and yG, therefore, [gi, g]hH
H

HG 1i . But Gi-1 
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and H are normal subgroup of G, therefore, Gi-1H=HGi-1. Hence [xgiH, yH]
H

HG 1i . But then [

H

G
,

H

HGi ] 
H

HG 1i . It shows that series (2) is a central series for 
H

G
. Hence 

H

G
 is nilpotent of 

class at most r. 

 

2.3.4 Theorem. If G is a nilpotent group and H({e}) is a normal subgroup of G, then HZ(G) {e}, 

Z(G) is the centre of G. 

  Proof. It is given that G is nilpotent of class r, therefore, G has a central series 

       G=G0G1… Gr{e}.  

  where each GiG and [Gi-1, G]Gi, 1 i  r.  Let H{e}be a normal subgroup of G. Let us 

suppose that HZ(G)={e}. Since G is nilpotent of class r, therefore, Gr-1{e}. As  [Gr-1, 

G]Gr={e}, therefore, every element of Gr-1 commutes with every element of G. Hence Gr-1  

Z(G). Now by our assumption HGr-1HZ(G)={e}. Further HG0(=G)=H {e}, therefore, 

there exist integer k , 1 k  r-1 such that   

    HGk-1{e} and HGk ={e}  (1)  

   Consider [HGk-1, G] [Gk-1, G]  Gk and [HGk-1, G] [H, G]  H (because H is 

normal in G). Hence [HGk-1, G]HGk={e}. But then HGk-1 Z(G). Therefore, HGk-1 

HZ(G)={e}, a contradiction to (1). Hence a contradiction to the assumption that HZ(G)={e}. 

It proves that HZ(G) {e}. 

 

2.3.5 Theorem. Prove that in a nilpotent group every proper subgroup is properly contained in its 

normalizer. 

  Proof. It is given that G is nilpotent(of class r), therefore, G has a central series 

       G=G0G1… Gr{e}.  

  where each Gi  G and [Gi-1, G]Gi, 1 i  r.  Let H be a proper subgroup of G. Then [Gr-1, 

G]Gr={e}H (because {e}H).  Since HG=G0, therefore, there exist a positive integer k such 

that HGk   and Gk+1 H, 0 k  r-1.But then [Gk, H][Gk, G]Gk+1H. Thus hH and xGk, 
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[x, h]H x
-1

h
-1

xhH. Equivalently, x
-1

h
-1

xH or  x
-1

hxH i.e. x
-1

HxH  xGk . Further for 

xGk, x
-1
Gk. Hence (x

-1
)
-1

Hx
-1
H i.e. xHx

-1
H. But then xHx

-1
H H  x

-1
Hx. By above 

discussion H = x
-1

Hx or xH=Hx  xGk. Therefore, by definition of normalizer of H. GkN(H). 

But H is a proper subgroup of Gk. Hence )H(NH . It proves the result. 

 

2.3.6 Definition (i)(Sylow’s subgroup) Let G be a finite group of order p
m

q,      gcd(p, q)=1, then a 

subgroup H of order p
m

 is called Sylow’s p-group or p- 

  Sylow group. 

  (ii) Maximal subgroup. Let G be a group. The proper subgroup H of G is called maximal 

subgroup if HKG, then either K=H or K=G. 

 

2.3.7 Theorem. Prove that in a nilpotent group all the maximal subgroups are normal. 

  Proof. Let G be a nilpotent group and M is a maximal subgroup of G. Then MG i.e. M is a 

proper subgroup of G. But we know that a proper subgroup of a nilpotent group is always a 

proper subgroup of its normalizer. Therefore, )M(NM

 . As M is maximal subgroup, therefore, 

N(M)=G. Hence M is normal in G.  

 

2.3.8 Theorem. Prove that in a nilpotent group all the Sylow p-subgroups are normal  

  Proof. Let P be a Sylow-p subgroup of nilpotent group G. It is sufficient to show that N(P)=G. 

We know that for a Sylow-p subgroup N(P)=N(N(P)). Now let if possible N(P)G. Then N(P) is 

a proper subgroup of G and hence will be a proper subgroup of its normalizer i.e. N(P) 

N(N(P)). But this is a contradiction to the fact that N(P)=N(N(P)). Since this contradiction arises 

due to the assumption that N(P)G. Hence N(P)=G. Therefore, every Sylow-p subgroup of 

nilpotent group G is normal.  

 

2.3.9 Theorem. Prove that a finite direct product of nilpotent groups is again nilpotent. 

  Proof. For proving the theorem, first we will show that direct product of two nilpotent groups is 

again nilpotent. Let H and K are two nilpotent groups. Since the length of a central series can be 
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increased (by repeating term {e} as many time as required), therefore, without loss of generality, 

we can suppose that central series of H and K have same length r and these series are as: 

    H=H0H1… Hr{e},  

  where each Hi  H and [Hi-1, H]  Hi, 1 i  r. 

  Similarly, 

    K=K0K1… Kr{e}.  

  where each KiK and [Ki-1, K]Ki, 1 i  r. 

  Since, Hi  Hi-1  and Ki  Ki-1, therefore, Hi  Ki Hi-1  Ki-1. Consider the series  

   HK= H0K0  H1K1 …  HrKr {(e,e)}  (1) 

  As h
-1

hihHi, k
-1

kikKi  hH, hiHi, kK and kiKi (because HiH and  KiK), therefore, (h, 

k)
-1

(hi, ki)(h, k)=(h
-1

, k
-1

)(hi, ki)(h, k)= (h
-1

hih, k
-1

kik) HiKi. Hence for each i, HiKi   HK 

and Hence (*) is normal series. 

      Let [(hi-1, ki-1), (h, k)] be an arbitrary element of [Hi-1Ki-1, HK] Since  

   [(hi-1, ki-1), (h, k)]=(hi-1, ki-1)
-1

(h, k)
-1

(hi-1, ki-1)(h, k) 

         =(hi-1
-1

, ki-1
-1

)(h
-1

, k
-1

) (hi-1, ki-1)(h, k) 

         = (hi-1
-1

h
-1

hi-1h, ki-1
-1

k
-1

ki-1k) 

       = ([hi-1, h], [ki-1, k]) ([Hi-1, H],[Ki-1, K]).  

  As [Hi-1, H]Hi and [Ki-1, K]Ki  for 1 i  r, therefore, [(hi-1, ki-1), (h, k)] HiKi. Hence [Hi-

1Ki-1, HK]  HiKi. It shows that series (1) is a central series for HK. Therefore, HK is 

nilpotent. Take another nilpotent group T. Since HK is nilpotent, therefore, by above discussion 

(HK)T= HKT is also nilpotent. Continuing in this way we get that if  H1, H2,…, Hn are 

nilpotent then H1H2… Hn is also nilpotent. 

 

2.3.10 Theorem. Let G be a finite group. Then the following conditions are equivalent. 

  (i) G is nilpotent. 

  (ii) All maximal subgroup of G are normal. 

  (iii) All Sylow p-subgroup of G are normal 

  (iv) Element of co-prime order commutes 
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  (v) G is direct product of its Sylow p-subgroups 

  Proof. Let G be a finite group. We will prove the result as:  

  (i)(ii). It is given that G is nilpotent. Let M be a maximal subgroup of G. If MG, then M is 

proper subgroup of its N(M), normalizer of M. But than N(M)=G. Hence M is normal in G. 

  (ii)(iii). Let Gp be a Sylow p-subgroup of G. We have to prove N(Gp)=G. Suppose that 

N(Gp)G. Since G is finite, therefore, there exist a maximal subgroup M of G such that 

N(Gp)MG and MG. Since Gp is Sylow p-subgroup of G and N(Gp)M, therefore, N(M)=M. 

Further by (ii) , N(M)=G. Hence M=G, a contradiction. Hence N(Gp)=G i.e. Gp is normal in G. 

  (iii)(iv). Let x and yG be such that (o(x), o(y))=1. Since the result holds for x=e or y=e, 

therefore, without loss of generality we suppose that xe and ye. Then o(x)=m(>1) and 

o(y)=n(>1), gcd(m, n)=1. Let m= r21
r21 p...pp 

 and s21
s21 q...qqn 

 , where pi and qj are distinct 

primes and i and j are positive integers. Since pi and qj are distinct primes, therefore, gcd(pi, 

qj)=1.  

    We know that if o(x)=p
α
, then xGp, Sylow p-subgoup. Similarly  yGq , Sylow 

q-subgoup if  o(y)=q

. By (iii) GpG and Gq G, therefore, for x Gp and yGq, x

-1
y

-1
xy 

GpGq ={e}. Hence x
-1

y
-1

xy=e i.e. xy=yx.  

    If we take 
i

i

i
p

m
m


 . Then gcd(m1, m2, …, mr)=1. Hence we can integers such 

that  a1, a2, …, ar such that a1m1+…+ aimi+ …+armr=1. Now  x=x
1
 =

rrii11rrii11 mamamama...ma...ma x...x...xx 
. For 1ir, choose iima

i xx  . Then x = 

x1…xi…xr  and e)x()x()x( mapmap
i

i
i

iii
i

i 


. Hence o(xi)|
i

ip


i.e. o(xi) is a power of pi, 

therefore, for each i, there exist 
ipG (Sylow pi-subgroup) such that xi ipG . Now by above 

discussion xixj=xjxi.  Similarly y=y1…yt…ys ,  yt  jqG and all yt commute with each other. By 

the same reason xi yj=yjxi.  Hence xy=x1…xi…xr y1…yt…ys = y1…yt…ys x1…xi…xr  = yx. 
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  (iv)(v) It is given that elements of co-prime order commute, we have to prove that G is direct 

product of its Sylow subgroups. Let o(G)= r21
r21 p...pp 

, pi’s are distinct primes. Since, for 1 i 

 r , i
ip


| o(G), G always have  
ipG  Sylow pi-subgoup of order  i

ip


. 

    Let x
ipG  and y

jpG . Then order of x is some power of pi and order of y is some 

power of pj, therefore, gcd(o(x), o(y))=1. Now by given condition xy=yx. Let xG, then 

o(x)|o(G). Therefore, o(x)= r21
r21 p...pp 

=u, ii0  . If we take 
i

i

i
p

u
u


 . Then gcd(u1, u2, 

…, ur)=1. Hence we can integers such that  a1, a2, …, ar such that a1u1+…+ aiui+ …+arur=1. Now  

x=x
1
 = rrii11rrii11 uauauaua...ua...ua x...x...xx 

. For 1ir, choose iiua
i xx  . Then 

x=x1…xi…xr  and e)x()x()x( uapuap
i

i
i

iii
i

i 


. Hence o(xi)|
i

ip


i.e. o(xi) is a power of pi, 

therefore, for each i, there exist 
ipG (Sylow pi-subgroup) such that xi ipG . Therefore, by given 

condition xixj=xjxi. But then
ipG G. hence 

ipG  is unique sylow pi subgroup of G. Now for 

ipi Gx  ,  1ir, GG...GGx
r21 ppp  . i.e. GG...GGG

r21 ppp  . In other words 

r21 ppp G...GGG  .   

      For given i, let if possible, e
r1i1i1i ppppp G...GG...GGt


 . Then 

ipGt o(t) is 

some power of pi and 
r1i1i1 pppp G...GG...Gt


 . Let 







r

ij
0j

j
jpk . Then t

k 
= e (because 

r1i1i1 pppp G...GG...G


is a group of order k and t is its element). But then pi|k, a contradiction. 

Therefore, t=e i.e.   }e{G...GG...GG
r1i1i1i ppppp 


. It proves that G is direct product of its 

Sylow subgroups. 

  (v)(i) We know that each Sylow subgroup is a p-subgroup and each p group is nilpotent. Now 

using the fact that direct product of nilpotent group is nilpotent group, G is nilpotent (because by 

(v) G is direct product of p subgroups). 
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2.4 SOLVABLE GROUP. 

2.4.1 Definition.(Solvable group). A group G is said to be solvable if there exist a finite subnormal 

series for G such that each of its quotient group is abelian i.e. there exist a finite sequence 

G=G0G1G2… Gn=(e) of subgroup of G in which each Gi+1 is  normal in  Gi and 
1i

i

G

G



 is 

abelian for each i, 0  i  n-1. 

2.4.2 Note. If G is nilpotent group, then G has a central series, G=G0G1G2… Gn=(e), where each 

GiG and )
G

G
(Z

G

G

1i1i

i



 . Since Gi+1  G, therefore,    Gi+1  Gi also.  More over 

)
G

G
(Z

G

G

1i1i

i



 , therefore, being a subgroup of commutative group, 
1i

i

G

G



 is abelian also. 

Hence G is solvable i.e. every nilpotent group is solvable also. 

 But converse may not be true. Take G=S3 and consider the series  

   S3=G0A3= G1{e}=G2.  

Trivially {e}  A3.  Since index of A3 in S3 is two, A3  S3. Therefore, it is a normal series for S3.  

Clearly order of 
1

0

G

G
 and  

2

1

G

G
 are prime numbers i.e. 2 and 3 respectively, therefore, the factor 

groups are abelian. Hence G is   solvable group.  

It is also clear that each Gi  G, therefore, it is a normal series for G.          Since 

Z(S3)={e}, therefore,  )
}e{

S
(Z)S(ZA

}e{

A 3
33

3  . Hence S3 is not nilpotent.  

 

2.4.3 Theorem. Prove that every subgroup of a solvable group is again solvable.  

 Proof. Let G be solvable group. Then G has a subnormal series 

 G=G0G1G2… Gn=(e)   (1) 
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such that 
1i

i

G

G



 is abelian for each i, 0  i  n-1. Let H be a subgroup of G. Define Hi=HGi for 

all i. Since intersection of two subgroups is always a subgroup of G, therefore, Hi is a subgroup 

of G. Further since Gi+1Gi, therefore,   Hi+1= HGi+1 HGi=Hi. Then the series  

       H=H0H1H2… Hn=(e)   

 is subnormal series of H.  

Define a mapping : Hi 
1i

i

G

G


 by setting (x)= xGi+1  xHi. Now    

xHi=HGi  xGi. But then xGi+1
1i

i

G

G



, therefore, mapping is well defined. Further for x 

and yHi, we have (xy)= xyGi+1= xGi+1yGi+1=(x)(y). Therefore,  is an homomorphism. 

Further ker ={xHi| (x)=Gi+1=(identity of 
1i

i

G

G



)}. Therefore, 

 xker  iff (x)=Gi+1 iff xGi+1=Gi+1 iff xGi+1 iff xHGi iff xHi+1. Hence ker = Hi+1. 

Then by Fundamental theorem on homomorphism,  
1i

i

H

H
 (Hi). Being a subset of an abelian 

group 
1i

i

G

G


, (Hi) is also abelian. Since  

1i

i

H

H


 is isomorphic to an abelian group, therefore, 

1i

i

H

H



   is also abelian. Hence H is solvable. 

 

2.4.4 Example. If G is a group and H is a normal subgroup of G such that both H and  
H

G
 are solvable, 

then G is solvable. 

  Solution. Since 
H

G
 is solvable, therefore, there exist a subnormal series 

   
H

G

H

G 0  
H

G1 … H
H

Gr      (1) 
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 Where each Gi is a subgroup of G containing H and each factor group 

H

G
H

G

1i

i


 is abelian. Now 

each 
H

G

H

G i1i  , therefore, (xH)
-1

yHxH
H

G 1i   xGi and  yGi+1. But then x
-1

yxH
H

G 1i   

xGi and yGi+1 which further implies that x
-1

yx 1iG    xGi and yGi+1 i.e. i1i GG  .   

Since  
1i

i

1i

i

G

G

H

G
H

G


 ,  therefore, 

1i

i

G

G



 is abelian also. Further H
H

Gr   Gr=H.  

  Since H is solvable, therefore, there exist subnormal series    H=H0H1H2… Hn=(e) such 

that 
1i

i

H

H



 is abelian for all 0  i n-1. 

  Now by above discussion series, 

                            G=G0G1G2… Gn=H=H0H1H2… Hn=(e)   

  is a subnormal series for G such that each factor group of it is abelian. Hence G is solvable. 

 

2.4.5 Theorem. A group G is solvable if and only if G
(k)

, k
th

 commutator subgroup is identity i.e. 

G
(k)

={e}. 

  Proof. Let G
(k)

={e} for some integer k. We will show that G is solvable. Let H0=G, H1=G
(1)

, 

H2=G
(2)

,…, Hk=G
(k)

. Since G
(i)

=(G
(i-1)

)
1
, therefore, G

(i) 
is a normal subgroup of G

(i-1)
 and 

)i(

)1i(

G

G 

 

is abelian.  But then series 

   G=H0H1H2… Hk=(e)    

  is a subnormal series for G such that each factor group of it is abelian. Hence G is solvable. 

   Conversely, suppose that G is solvable group. We will prove that G
(k)

=e for some integer 

k. Let G=N0N1N2… Nk={e} be a solvable series for G. Then each Ni is normal in Ni-1 and 
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i

1i

N

N   is abelian for all 1 i  k. Since we know that  
H

G
 is abelian iff  the commutator subgroup 

)1(G H, therefore, i
)1(

1i NN  . Thus  

   1
)1(

0
)1( NNG   

   2
)1(

1
)1()1()2( NN)G(G  . Continuing in this way we get }e{NG k

)k(  . But then 

}e{G )k(  . It proves the result. 

 

2.4.6 Corollary. Every homomorphic image of a solvable group is solvable. 

  Proof. Let G be a solvable group and G* be its homomorphic image under the mapping . Now if 

[x, y] = x
-1

y
-1

xy  G
(1)

, then (x
-1

y
-1

xy) = (x
-1

) (y
-1

) (x) (y) = (x)
-1
(y)

-1
(x)(y) = [(x), 

(y)] G*
(1)

. Similarly G*
(k) 

= (G
(k)

) =(e) = e*. Hence G* is solvable. 

 

2.4.7 Corollary. Prove that every factor group of a solvable group is solvable.  

Proof. Let G be solvable group and H be its normal subgroup of G. Consider the factor group 
H

G
 

and define a mapping  : G 
H

G
 by  setting (g)= gH  gG. Then (g1g2)= 

g1Hg2H=(g1)(g2). Hence  is an homomorphism. Further for each gH we have gG such that 

(g)= gH.  Hence 
H

G
 is homomorphic image of a solvable group. Therefore 

H

G
 is solvable. 

 

2.5 SOME DEFINITIONS.  

2.5.1   Ring. A non empty set R  is called associative ring if there are two operations defined on R, 

generally denoted by + and . such that for all a, b, c in R: 

    (1) a+b is in R,  

(2) a+b=b+a, 

(3) a+(b+c)=(a+b)+c) (called as associative law under addition) 

(4) R0  such that 0+a=a+0=a, 
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(5) For every a in R, there exist (-a) in R such that a+(-a)=(-a)+a=0,  

(6) a
.
b is in R, 

(7) a
.
(b

.
c)= (a

.
b)

.
c (called as associative law under multiplication) 

  (8) a
.
(b+c)= a

.
b+a

.
c  and  (a+b)

.
c)= a

.
c+b

.
c (called as distributive laws) 

Beside it if there exist 1 in R such that 1
.
a= a

.
1=a for every a in R, then R is called associative 

ring with unity. 

 

2.5.2   Integral domain. An associative ring R such that a
.
b= 0 if and only if a=0 or b=0  and  a

.
b= b

.
a 

for all a and b in R,  then R is called an integral domain.   

 

2.5.3 Field. Every integral domain in which every non-zero element has an inverse is called field. 

 

2.5.4   Vector Space. Let F be a field. Then a non empty set V with two binary operations called 

addition (+)and scalar multiplications(
.
) defined on it, is called vector space over F if  V is abelian 

group under + and for F , Vv , Vv satisfies the following conditions: 

 (1) α(v+w) = αv+ αw for all F  and v , w in V, 

 (2)  )(  v = αv+ v  ,  

 (3) )( v = ( v) 

 (4) 1v = v 

  For all  ,    F  and  v , w belonging to V.  v and w are called vectors and  ,   are called 

scalar.  

 

2.6       FIELD EXTENSION  

2.6.1  Definition.(Field extension). Let F be a field; the field K is called the extension of F if K contains 

F or F is a subfield of K. 

     

 Example. The field C (of all complex number) is an extension of field R (of all real numbers). 
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2.6.2 Note. As it is easy to see that every extension of a field acts as a vector space    over that field, 

therefore, if K is an extension of F, K is a vector space over F and dimension of K is called 

degree of extension of K over F. It is denoted by [K:F]. If [K:F] is finite, then it is called finite 

extension otherwise it is called infinite extension. C is a finite extension of R, while R is not 

finite extension of Q (the field of rational numbers). 

 

2.6.3 Theorem. Let L, K and F are fields such that L is a finite extension of K,  K is a finite extension 

of F, then prove that L is finite extension of F also.  

 Proof. Since L is a finite extension of K, therefore [L:K] =m(say) and the  subset { ml,...l,l 21 } of L 

is a basis of L over K. Similarly take [K:F]=n  and { nk,...k,k 21 } as a basis of K over F. We will 

show that the set of mn elements { njmikl ji  1,1; } act as a basis of L over F. First we show 

that every element of L is linear combination of elements of jikl  over F. Let l  be an arbitrary of 

L. Since { ml,...l,l 21 } is a basis of L over K, therefore, 

                      mmklklkll  ...2211 ; Kki                                                 (1)  

Further using the fact that { nk,...k,k 21 } is a basis of K over F, we write 

                       niniii kfkfkfk  ...2211 ; Ffij  , njmi  1,1   

 On putting the values of ik in (1) we get  

                       
)...(...

)...()...(

2211

2222121212121111

nmnmmm

nnnn

kfkfkfl

kfkfkflkfkfkfll




 

 On simplification we write 

 



 

m

i

n

j
jiijnmmnmmmm

nnnn

klfklfklfklf

klfklfklfklfklfklfl

1 1
2211

22222212211121121111

......

......

 

   i.e. l  is linear combination of jikl over F. 

  Now we will show that jikl ; njmi  1,1  are linearly independent over F. let  

                 
0......

......

2211

22222212211121121111





nmmnmmmm

nnnn

klklkl

klklklklklkl
; Fij  , which after re-

arrangement can be written as  
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.0)...(...

)...()...(

2211

2222121212121111





nmnmmm

nnnn

kkkl

kkklkkkl
 

As KF  , therefore, Kkkk ninii  ...2211  for mi 1 . Since  il  are linearly independent 

over K, therefore, 0...2211  ninii kkk . Now using the fact that jk ; nj 1  are linearly 

independent over F, we get that 0ij . Hence jikl ; njmi  1,1  are linearly independent over 

F and hence { njmikl ji  1,1; } is basis of L over F. As this set contains nm element, we have  

nm=[L:F]= [L:K] [K:F]. 

 

2.6.4 Corollary. If L is a finite extension of F and K is a subfield of L containing F, then [L:F]= [L:K] 

[K:F] i.e.[K:F] divides [L:F]. 

 Proof. Since it is given that [L:F] is finite, therefore, for proving above result,  it is sufficient to 

show that [L:K] and [K:F] are also finite. As KF   , therefore, any subset which is linearly 

independent over K, is linearly independent over F also. Hence [L:K] is less then [L:F] i.e. [L:K] 

is finite. As K is a subfield of L containing F, therefore K is a subspace of L over F. Hence 

dimension of K as a vector space over F is less then that of L i.e. [K:F] is finite. Now by use of 

Theorem 2.6.3, we get [L:F]= [L:K] [K:F] . Hence [K:F] divides [L:F]. 

 

2.7  PRIME FIELDS 

2.7.1  Definition. A Field F is called prime field if it has no proper subfield. (If K is subfield of F 

containing more than two elements and K≠ F, then K is called proper subfield of F). 

  

Example. (i) Set of integers {0, 1, 2, …, p-1} is a field under addition and multiplication modulo 

p, p is prime number. The order of this field is p. As order of every subfield divides the order of 

field, the only divisors of p are 1 and p itself. Hence above field has no proper subfield. 

Therefore, this field is prime field and generally denoted as Zp.  

 (ii) Field of rational numbers is also prime field. Let K be a subfield of Q (field of rational 

numbers) then 1K. Let m/n be arbitrary element of Q, As m=1+1+…1, (taken m times), mK, 
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similarly nK. But then n inverse  i.e.  (1/n)K and then m/nK. i.e  Q  K. Hence Q=K, 

Showing that Q has no proper subfield. i.e. Q is a prime field. 

 

2.7.2  Theorem. Prove that any prime field P is either isomorphic to Q (field of rational numbers) or Zp 

(field of integers under addition and multiplication modulo p, p is prime). 

 Proof. Let e be the unity (multiplicative identity) of P. Define a mapping            :ZP  by  

(m)=me, mZ. It is easy to see that it is a ring homomorphism and Ker is an ideal of Z. Since 

Z is a principal ideal domain, therefore, there exist an integer q say such that Ker=<q>. Consider 

the following cases: 

 Case (i). q=0, then  is one –one mapping. Hence Z (Z)  P. Clearly (Z) is integral domain. 

We know that if two integral domains are isomorphic then there field of quotient are also 

isomorphic. Q is the field of quotient of Z and let Q
*
 be the field of quotients of (Z), then Q Q

*
. 

Since  (Z)  P , therefore,     Q
*
  P. As P is prime field, therefore Q

*
 = P. Hence PQ.  

 Case (ii) If q≠0, then q>0, q can not be 1 because if q=1, then (q)= qe =0 , zero of field P, 

implies that e=0, a contradiction. Hence q>1. Further if q=ab; a>1, b>1, then (q)= qe 

=abe=aebe=0 implies that either ae=0 or be=0. A contradiction that q is the smallest integer such 

that qe =0. Hence q≠ab. Therefore q is some prime number p (say). But then <p> is a maximal 

ideal and Z/<p> =Zp becomes a field. Now by fundamental theorem of homomorphism. Zp 

(Z). As Zp is a field, therefore, (Z) is also a field. But then (Z)=P. Hence Zp P. 

 

2.8 CHECK YOUR PROGRESS 

Q (i) What do you under by a Central series, Upper central series and the Lower central series of 

a group? What is the length of a central series? 

Q (ii) Does every group have a central series? 

Q (iii) What do you understand by a Nilpotent group. Is every finite group nilpotent. 

Q (iv) Choose symmetric group of degree 4 i.e.     and show that it is solvable but not nilpotent. 

Q (v) Write the upper central series and lower central series of  

   *                   +  to support the results discussed in Corollary 2.2.7.  
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Q (vi)  With the help of Theorem 2.4.5 show that      is solvable. 

Q (vii) What do you understand by Theorem 2.6.3 

 

 

 

2.9 SUMMARY.  

          In first Chapter we study Central series, Nilpotent groups, Solvable groups, upper and 

lower central series of a group and prime fields. 

 

2.10 KEY WORDS 

Central series, Nilpotent, Solvable, Prime fields, Extensions. 

 

2.11 SELF ASSESMENT QUESTIONS. 

(1) Prove that direct product of solvable group is again solvable. 

(2) Prove that S5 is not solvable.  In fact Sn is not solvable for all n>4. Sn  is symmetric group of 

degree n. 

(3) Prove that every group of order pq, p
2
q and pqr is solvable where p, q and r are distinct 

primes 

(4) Prove that a finite p group is cyclic if and only if it has exactly one composition series. 

(5) Prove that every field has a subfield isomorphic to prime field. 

 

2.12     ANSWERS TO CHECK YOUR PROGRESS 

           Answer Q (i) For it read Section 2. Let (    )  subgroups of G forms a central series of G. If 

any series which contains lesser then      subgroups never forms a central series, then   is called the 

length of central series of  . For example, if G is abelian then   (  )      * + is a central series 

obtained by using least number of subgroups of  . The length of the series is 1.  

Q (ii) No. For example    has no central series 
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Q (iii) Read the definition of a nilpotent group. No      is not nilpotent. 

Q (vi)  Since third  commutator of     is identity, the    is solvable. 

Q (vii) From the theorem we can say that  ( 
 

 ) can not be an extension of  ( 
 

 ). 
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Lesson No. 3                                                                Written by Dr. Pankaj Kumar 
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Field Extensions-II and Constructions 

Structure: 
3.0 Learning Objectives 

3.1 Introduction 

3.2 Algebraic extension 

3.3 Roots of a polynomial 

3.4 Simple extension 

3.5 Conjugate elements 

3.6 Construction by Straight edge and compass 

3.7 Check your progress 

3.8 Summary 

3.9 Keywords 

3.10 Self-assessment test 

3.11 Answers to check your progress 

3.12 References/ Suggested readings 

 

3.0  LEARNING OBJECTIVE. Objective of this lesson is to know more about field 

extensions  and about the geometrical constructions using straight edge and compass. 

 

3.1 INTRODUCTION. Let us take a polynomial x
2
-2 over Q (field of rational numbers). This 

polynomial has no rational root. Then it is general question ‘Does there exist a field which 

contain all the roots of this polynomial’. For answering this question we need the extension of the 

field Q. Therefore, in this chapter we study algebraic, transcendental and simple extensions. We 

also study the conjugate element. 
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                 In Section 3.2 we study algebraic and transcendental extensions. In Section 3.3 we 

study about roots of a polynomial over the field F. Next two Sections contain conjugate elements 

and simple extensions. At the last we study construction by straight edge and compass and see 

the application of algebraic number in geometrical constructions. 

 

 

3.2    ALGEBRAIC EXTENSION 

3.2.1  Definition. An element    is called algebraic over F if it satisfies some non-zero polynomial 

over F. i.e. if there exist elements n ....,,, 10  in F, not all zero such that 

0....aa n
1n

1
n

0  
. 

 

3.2.2  Minimal polynomial of aK over field F.  Smallest degree polynomial in F[x] satisfied 

by a is called minimal polynomial of a over field F. If the coefficient of highest degree of 

minimal polynomial  ( ) of a is one, then it is called minimal monic polynomial of a. It is 

unique always. For it, Let n
nn xx   ....1

1  and n
nn xx   ....1

1  be two minimal monic 

polynomials of a. Then 

    0....1
1  

n
nn aa  and 0....1

1  
n

nn aa . 

  Equivalently 0....)( 1
11  

nn
na  i.e. a satisfies a polynomial nn

nx   ....)( 1
11  of 

degree less than  , a contradiction. Hence minimal monic polynomial of a  is always unique. 

Minimal polynomial of a is irreducible also. Note that polynomial  ( ) is irreducible over F if it 

can not be written as product of two non-constant polynomials in  , -. Let if possible  ( )  

 ( ) ( )  where  ( ) is the minimal polynomial of a in F[x],  ( ) and    ( ) are non-constant 

polynomials in  , -  Then 

        ( )   ( )  ( )        

As h(a) and g(a) are the element of K, therefore, either h(a)=0 or g(a)=0. It means either a  

satisfies h(x) or g(x), polynomial of lower degree then that of degree of  ( ), a contradiction. 

This contradiction proves that  ( ) is irreducible over F.      
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3.2.3  Definition. Field F(a). Let F be a field, then F(a) is called the smallest field containing F and a. 

In other word, if K is an extension of F containing a, then intersection of all subfields of K which 

contains F and a is the smallest field containing F and a. Consider the set T={

;
a....aa

a....aa

n1n
1n

1
n

0

mm
1m

1
m

0










 F, ji  , n and m are any non-negative integers}. Then it is 

easy to see that T becomes a subfield of K. Since T contains F and a and F(a) is the smallest field 

containing F and a, therefore, F(a)  T.  As a is in F(a) , therefore,  mm
mm aaa  


1
1

10 ....  

and )(.... 1
1

10 aFaaa nn
nn  
 . Now )a(Fa....aa n1n

1n
1

n
0  


, therefore, 

inverse of  n1n
1n

1
n

0 a...aa  


  also belongs to F(a). Hence 

n1n
1n

1
n

0

m1m
1m

1
m

0

a....aa

a...aa











F(a) and hence T F(a). Now by above discussion F(a)=T.  

Here we see that F(a) is the field of quotients of F[a], where F[a] is set of all polynomials in a 

over F. Now we will study the structure of F(a), when a is algebraic over F. 

 

3.2.4  Theorem. The element aK will be algebraic over F if and only if [F(a):F] is finite.  

  Proof. First suppose that [F(a):F]=n(say). Consider subset {1, a, …, a
 n

} of F(a) containing n+1 

elements. Since the dimension of F(a) is n,  these elements will be linearly dependent over F i.e. 

we can find  n ....,,, 10  in F, not all zero, such that 0....1
10  

n
nn aa . Since a satisfies a 

non-zero polynomial n
nn xx   ....1

10  in F, therefore, a is algebraic over F. 

              Conversely, suppose that a is algebraic over F, then by Definition 3.2.1, a satisfies some 

non zero polynomial in F. Let p(x)= n
nn xx   ....1

1  be the  smallest degree monic polynomial 

in F such that p(a)=0. i.e  0....1
1  

n
nn aa . But then n

nn aa   ....1
1 . 

   Further 

    aaaaa nn
n

n
nn   ....)....(.... 1

111
1  

   which is again a linear combination of elements 1, a, a
2
,…,a

n-1
 over F. Similarly, for non-negative 

integer k, a
n+k 

is linear combination of elements 1, a, a
2
,…,a

n-1
 over F.  
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   Consider the set T={ niforFaaa inn
nn  
 1;.... 1
1

2
1

1 }. Let 

nn
nn aaaah  


1
1

2
1

1 ....)(  and nn
nn aaaat  


1
1

2
1

1 ....)(  are two arbitrary 

elements of T.  Then T is closed under addition. Since every power of a is linear combination of 

the elements 1, a, a
2
,…,a

n-1
 over F, therefore, Tatah )()(  i.e. T is closed under multiplication too.  

Further Tatah  )()( .  

   Now we will show that for non-zero element u(a), Tauah 1)()( .  Since u(a)=

0.... 1
1

2
1

1  


nn
nn aaa , therefore, p(x) does not divides u(x).  Since p(x) is irreducible, 

therefore, gcd(p(x), u(x))=1. Now we can find two polynomials g(x) and h(x) in F[x] such  that   

p(x)h(x)+u(x)g(x)=1 or equivalently p(a)h(a)+u(a)g(a)=1. As p(a)=0, therefore, u(a)g(a)=1. 

Hence g(a) is inverse of u(a). Now )()()()( 1 agahauah   is also in T. Here we have shown that T is 

a subfield of K containing F and a. Hence F(a)T. Also it can be easily seen that T is contained 

in F(a). Hence T=F(a).  

    Now we will show that the subset {1, a, a
2
,…,a

n-1
 } of  T acts as a basis for F(a) 

over F. Since every element of T is of the form nn
nn aaa  


1
1

2
1

1 .... , therefore, every 

element of T is linear combination of elements of the set {1, a, a
2
,…,a

n-1
 }. Now we have to show 

that these elements are linearly independent over F. Let Faa inn
n  
 ;0.... 1
1

1 . Then ‘a’ 

satisfies a polynomial nn
nn xxx  


1
1

2
1

1 ....  of degree n-1 which less then n, the degree of 

minimal polynomial p(x) over F. Hence it must be a zero polynomial i.e. each 0i . Now it is 

clear that [F(a):F]=n. Hence F(a) is a finite extension of F. 

 

3.2.5  Definition. If the minimal polynomial of aK is of degree n, then ‘a’ is  algebraic over F of 

degree n. 

  As the minimal polynomial of 2  is  x
2
-2. therefore, 2   algebraic over Q of degree 2. Similarly 

4

1

3

1

3,2  are algebraic over Q and are of degree 3 and 4 respectively. 

    

3.2.6  Note.  If aK is algebraic of degree n, then [F(a):F]=n. See the problem 3. 
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3.2.7  Definition. An extension K of F is called algebraic extension of F if every element of K is 

algebraic over F. 

 

3.2.8  Theorem. Prove that every finite extension K of F is algebraic extension of F. 

  Proof. Let [K: F]=n and k is arbitrary element of k. Consider  n+1 elements 1, k, k
2
, …, k

n
. As 

dimension of K is n over F, these elements of K are linearly dependent over F. Hence

0...2
210  n

nkkk with at least one of Fi   is not zero. In other words, we can 

say that k satisfies non zero polynomial 
n

nxxx  ...2
210  over F, k is algebraic over 

F. Hence K is algebraic extension of F. 

 

3.2.9  Theorem. Let K be an extension of F. The elements of K which are algebraic over F form a 

subfield of K. 

  Proof. Let S be the set of all elements of K which are algebraic over F. Let a and b are two 

arbitrary elements of S. In order to show that S is a subfield of K, we will show that a+b, a-b, ab 

and ab
-1

 all are in S.  Since field F(a, b) contains all elements of the form a+b, a-b, ab and ab
-1

, it 

is sufficient to show that F(a, b )  is a finite extension of F. Suppose that a is algebraic of degree n 

over F and b is algebraic of degree m over F. Then by Note 3.2.6, [F(a): F]=n and [F(b): F]=m. 

Further a number which is algebraic over F is also algebraic over every extension of F. Hence b 

is algebraic over F(a) also and therefore, [F(a, b):F(a)]   [F(b):F]=m. By Theorem 2.6.3,  [F(a, 

b): F]= [F(a, b): F(a)] [F(a): F]. Therefore, by above discussion [F(a,b): F]  mn i.e. finite. Now 

by Theorem 3.2.8, F(a, b) is an algebraic extension of F. Hence  a+b, a-b, ab and ab
-1

 all are 

algebraic over F and hence belongs to S i.e. S is a subfield of K. 

 

3.2.10 Corollary. If a and b in K are algebraic over F of degrees n and m respectively, then a+b, a-b, 

and a/b (b0) are algebraic over F of degree at most mn. 

  Proof. Given that [F(a):F]=n and [F(b):F]=m. Since a number which is algebraic over F is also 

algebraic over every extension of F, therefore, b is algebraic over F(a) also and satisfies a 
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polynomial of degree at most m. Hence [F(a, b):F(a)]   [F(b):F]=m. By Theorem 2.6.3, [F(a, 

b):F]= [F(a, b):F(a)] [F(a):F]. Therefore, by above discussion [F(a, b): F]  mn i.e. finite. Now by 

Theorem 3.2.8, F(a, b) is an algebraic extension of F. Hence a+b, a-b, ab and ab
-1

 all are algebraic 

over F. Since [F(a, b): F]  mn, every element of F(a, b) satisfies a polynomial of degree at most 

mn over F. Since a+b, a-b, ab and ab
-1

 all are in F(a, b), therefore, there minimal polynomial is of 

degree at most mn and hence are algebraic of  degree at most mn over F. 

    

3.2.11 Note. F(a, b) is the field obtained by adjoining b to F(a) or by adjoining a to F(b). Similarly we 

can obtain )...,,,( 21 naaaF by adjoining a1 to F, then a2 to F(a1), a3 to F(a1, a2) and so on and at 

last adjoining an to F(a1, a2,…, an-1).  

  

3.2.12 Theorem. If L is an algebraic extension of K and K is an algebraic extension of F, then L is an 

algebraic extension of F. 

 Proof. Let u be an arbitrary element of field L. We will show that u is algebraic over F.  As u is 

algebraic over K, therefore, u satisfies the polynomial 
nxx  ...10 , Ki  . Since K is 

algebraic extension of F, therefore, each i  is also algebraic over F. As 0  is algebraic over F, 

therefore, ]:)([ 0 FF   is finite. Since 1  is algebraic over F, therefore, it is algebraic over F( 0 ) 

also. Hence )](:))(([ 010  FF  = )](:),([ 010  FF  is finite extension. Similarly we can see 

that for 10  ni , )],..,,(:),..,,([ 11010  ii FF  is finite. Now by Theorem 2.6.3,    

 ]:),..,,([ 110 FF n = )],..,,(:),..,,([ 210110   nn FF  

      )],..,,(:),..,,([ 310210   nn FF  

       ……. )](:),([ 010  FF ]:)([ 0 FF   

 is finite because for each i, )],..,,(:),..,,([ 11010  ii FF is finite. We also see that the 

polynomial 
nxx  ...10  has all its coefficients in the field ),..,,( 110  nF , therefore, u 

is  algebraic over ),..,,( 110  nF also. Hence )],..,,(:))(,..,,([ 110110   nn FuF is 

finite. Now  
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 FuF n :))(,..,,([ 110  ]  

  = )],..,,(:))(,..,,([ 110110   nn FuF ]:),..,,([ 110 FF n  is also finite. But 

then ),,..,,( 110 uF n  is algebraic extension of F. As ),,..,,( 110 uFu n , therefore, u is 

algebraic over F. Hence L is algebraic extension of F.  

 

3.2.13 Definition. A complex number is said to be algebraic number if it is algebraic over the field of 

rational numbers. Complex number which is not algebraic is called transcendental. 

3.2.14  Example.(i) Show that 3 52  is algebraic over Q of degree 6. 

 Solution. Let 3 52 . Then 3 52  . Cubing on both sides we get 

   5222623 223    

 Then   

   )263(25 223  . Squaring on both sides we get 

  22236 )263(22510   i.e.    satisfies a polynomial 

22236 )263(22510  xxxx  of degree six over Q. More over it is the smallest degree 

polynomial satisfied by  . Hence  is  algebraic over Q and is of degree 6.  

  

 Example (ii) Show that )5,2(Q)52(Q 33  . Then show that 6]Q:)5,2(Q[ 3  . 

 Solution. First we will show that )5,2(Q)52(Q 33  . Since )5,2(Q2 3   and  

)5,2(Q5 33  , therefore, )5,2(Q52 33  . But )52(Q 3  is the smallest field 

containing 3 52  . Hence )5,2(Q)52(Q 33  .  

   On the other hand 3 52   )52(Q 3 , then 332 5.22252 

also belongs to )52(Q 3 . Equivalently, 

   )2(5)225(52 3332    (1) 

  Cubing (1) on both sides, we get 
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   )22623(5)2(5)2( 23332     

            2)23(5305 23  .  

   32 )2(   2)23(5305 23 )52(Q 3 . Since   )52(Q 3 , therefore, 

 )23(5 2 )52(Q 3 . But then  12 )23( )52(Q 3 . Hence 

  2)23()23( 212   )52(Q2 3  

 and hence 

       )52(Q52522 333   

 Since )52(Q5,2 33  , therefore,  )52(Q)5,2(Q 33  . Hence     

   )52(Q)5,2(Q 33  .  

As 2  satisfies the polynomial 2x2  , therefore,  2  is algebraic of degree over Q. Hence 

2]Q:)2(Q[  . The general element of the field Qb,a;2ba)2(Q  .  

Clearly, 2ba53  . Because, if 2ba53  , then a2b53  . As left 

hand side is an irrational while right hand side is rational number, a contradiction. Since  3 5  

satisfies the polynomial 5x3 over Q, which is irreducible over Q, therefore, 3]Q:)5(Q[ 3  .  

As 3 5  is algebraic over Q, therefore, it is algebraic over )2(Q . But then 

3)]2(Q:)5,2(Q[ 3  . Because )2(Q53  ,  1)]2(Q:)5,2(Q[ 3  . Hence 

3)]2(Q:)5,2(Q[ 3   and hence 62.3]Q:)2(Q][2(Q:)5,2(Q[]Q:)5,2(Q[ 33  . 

 Since )5,2(Q)52(Q 33  , therefore, 6]Q:)52(Q[ 3  .  

 

3.2.15  Example. Let g(x) be a polynomial with integer coefficients, prove that if p is a prime number 

then for pi  , )
)!1p(

)x(g
(

dx

d
i

i


 is a polynomial with integer coefficients each of which is divisible 

by p. 
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Solution. As we know that for given integer n and m, 
mm C!.mP nn  where 

mPn  is the number of 

permutations of n distinct things taking m at a time and 
mCn is the number of combination of n 

different things taking m at a time. Further,  
mPn  and 

mCn , both are integers,  we get  that 
!m

n
mP

=
!m

)1mn)...(1n(n 
 is an integer. In other words, product of m consective positive integers is 

always divisible by m!. As )
)!1p(

x
(

dx

d k

i

i


  = 

)!1p(

x
)1ik)...(1k(k

ik






; if ki and zero otherwise. 

By above discussion )1ik)...(1k(k   is the product of i consective integers  hecce divisible by 

i!. But ip, hence p! also divides )1ik)...(1k(k   and hence p divides 
)!1p(

)1ik)...(1k(k




. 

Now by above discussion )
)!1p(

)x(g
(

dx

d
i

i


 is a polynomial with integer coefficients each of which is 

divisible by p. 

 

3.2.16 Theorem. Prove that number    is transcendental. 

 Proof. Suppose f(x) is a polynomial of degree r with real coefficient. Let 

)x(f...)x(f)x(f)x(F r1  ; )x(f k  is the k
th

 derivative of f(x) with respect to x.  Consider 

)x(Fe x . Then 

 )x(fe))x(Fe(
dx

d xx   .  

As )x(Fe x  is continuously differentiable singled valued function in the interval [0, k] for 

positive integer k, by mean value theorem we get  

  kx
x

0k

k
))x(Fe(

dx

d

0k

)0(Fe)k(Fe









 ; 10 k   

On simplification, we get, 

 )k(fke)0(Fe)k(F k
k)1(k k   . We write these out explicitly: 
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11
)1( )k(fe)0(eF)1(F 1    

22
)1(22 )k(fe2)0(Fe)2(F 2    

. 

. 

. 

nn
)1(n )n(fne)0(Fe)n(F n    

Suppose now that e is an algebraic number ; then it satisfies some relation of the form  

 0cec...ecec 01
1n

1n
n

n  
 ; c0, c1,…,cn are integers and c0>0. 

Now  

11
)1(

1 )k(fe)0(eF)1(F(c 1    

+ 22
)1(22

2 )k(fe2)0(Fe)2(F(c 2    

+… 

+ nn
)1(n

n )n(fne)0(Fe)n(F(c n   . Equivalently 

nn111
1n

1n
n

nn21 c...c)ec...ecec)(0(F)n(Fc...)2(Fc)1(Fc  
 Since 

 01
1n

1n
n

n cec...ecec  
 , 

 therefore, above equation reduces to 

 nn11n210 c...c)n(Fc...)2(Fc)1(Fc)0(Fc    (*) 

Since the equation (*) holds for all polynomials f(x), choose  

f(x)= ppp1p )xn...()x2()x1(x
)!1p(

1




 ; p is a prime number so that p > n and p > c0. 

When expand, f(x) is a polynomial of the form 

...
)!1p(

xa

)!1p(

xa
x

)!1p(

)!n( 1p
1

p
01p

p













 ,                                   (**) 

 where a0, a1, …, are integers. 

 Consider the following cases:  

(i) when pi  . 
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By Example 3.2.15, )x(f i is a polynomial whose coefficients are all multiple of p. Thus for any 

integer j, )j(f i  is a multiple of p.  

(ii)  i<p-1. Since f(x) has roots  1, 2, …, n, each with multiplicity p and zero is root of f(x) with 

multiplicity p-1. therefore,   )x(f i  is zero for x=0, 1, 2, …, n.  

(iii) i=p-1. Since f(x) has roots  1, 2, …, n, each with multiplicity p and zero is root of f(x) with 

multiplicity p-1, therefore, )x(f 1p  is zero for x= 1, 2, …, n and by (**), p1p )!n()0(f  . Since, 

p > n, therefore, )0(f 1p  is not divisible by p . 

As )x(f...)x(f)x(f)x(F r1  , therefore, )j(f...)j(f)j(f)j(F r1  . From the above 

discussion we conclude that F(j), nj1  is a multiple of p. Further by case (iii) , )0(f 1p  is not 

divisible by p and by case (i) and (ii) )0(f i is divisible by p, resulting that F(0) is not divisible by 

p. Since p > c0, therefore, )n(Fc...)2(Fc)1(Fc)0(Fc n210  , left hand side of (*) is not 

divisible by p.  

Since 10;
)!1p(

i)i()in...()i1(e
i

1p
i

p
i

p
i

)1(i

i

i









. 

Thus 
)!1p(

)!n(ne
||

ppn

i


 , which tends to zero as p. Therefore, we choose  p such a large prime 

so that 1|c...c| nn11  . But )n(Fc...)0(Fc n0    is an integer, therefore, nn11 c...c   is 

an integer. Hence nn11 c...c  =0. But then p divides nn11 c...c  , a contradiction. Hence 

contradiction to our assumption that e is algebraic. Therefore, e is transcendental. 

 Example. For m>0 and n are integers, prove that n

m

e  is transcendental. 

Proof. If a number b is algebraic then b
k
 is also algebraic. Since b is algebraic, therefore, b 

satisfies polynomial  

01
1n

1n
n

n cxc...xcxc  
 .  
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But then m

1

b  for m>0, satisfies the polynomial 0
m

1
)1n(m

1n
mn

n cxc...xcxc  
 . Hence if 

b is algebraic then m

1

b  is also algebraic.  

  Let us suppose that n

m

et  is algebraic, then mn et  is also algebraic. As nt is 

algebraic, therefore, by above discussion, m

n

t  is also algebraic. But et m

n

 , therefore, e is also 

algebraic, a contradiction. Hence a contradiction to our assumption that n

m

e  is algebraic and 

hence n

m

e  is transcendental. 

 

3.3 ROOTS OF A POLYNOMIAL 

3.3.1 Definition. Let K be an extension of field F, then aK is called root of        f(x) F[x] if f(a)=0. 

3.3.2 Definition. The element a K is a root of f(x) F[x] of multiplicity m if       (x-a)
m

| f(x) and 

)x(f|)ax( 1m
  i.e. (x-a)

m
 divides f(x) and 1m)ax(   does not divides f(x). 

 

3.3.3 Note. (i) Let K be an extension of field F, If f(x) F[x], then any element        a K , f(x)=(x-

a)g(x)+f(a),  where g(x) K[x] and degree of g(x) = degree of f(x)-1.  

 (ii) If K is an extension of field F, a K is a root of  f(x) F[x], then in K[x], (x-a)|f(x).  

 (iii) A polynomial of degree n over a field can have at most n roots in any extension field 

 (iv) If p(x) is an irreducible polynomial in F[x] of degree n1, then there exist an extension E of 

F in which p(x) has a root. Further, if f(x) F[x], then there exist an extension E of F in which 

f(x) has a root. More over [E:F]  degree of f(x). 

 (v) If f(x) is a polynomial of degree n (1) over a field F, then there exists an extension E of F 

which contains all the root of f(x). The degree of extension of this field over F is at most n! i.e. 

[E:F] n!.  
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 (vi) Let f(x) = 01
1n

1n
n

n cxc...xcxc  
  be a polynomial with integer coefficients, then f(x) 

will be irreducible over  the field of rational numbers Q  if we can find a prime number p such 

that 011n c|p,c|p,...,c|p  , nc|p   and 0
2 c|p  . 

 (vii) Let k be a positive integer, then  polynomial  f(x) is irreducible over the field of  rational 

numbers if and only if  f(x+k) or f(x-k) is irreducible. These results are easy to prove.  

 

3.3.4.  Definition. If f(x) F[x], a finite extension E of F is said to be splitting field over F for f(x)

 if over E, but not over any proper subfield of E, f(x) can be factored as a product of linear 

factors. Since any two splitting fields over F of f(x) are isomorphic, therefore, splitting field of 

f(x) is unique. 

 

3.3.5. Example (i). Consider the polynomial f(x)= x
3
-2  over the field of rational numbers.  The roots of 

the polynomials are 
23

1

3

1

3

1

2,2,2    ; is cube root of unity and is a complex number.  As the 

field   )2(Q 3

1

 is the subset of real numbers, it does not contain . As 3]Q:)2(Q[ 3

1

 , the degree 

of spitting field is larger than 3. Also by Note 3.6.3(v), the degree if splitting field is at most 6. 

Now we can see that if E is the splitting field over F of x
3
-2, then [E: F]=6.     

   

(ii) If f(x)= x
4
+ x

2
+1, then f(x)= x

4
+2 x

2
+1- x

2
= (x

2
-x+1)( x

2
+x+1).  As  and 

2  are the root of 

the polynomial x
2
+x+1, therefore, roots of polynomial    (x

2
-x+1) are - and -

2 . Since all the 

roots are contained in the field Q(). Hence the splitting field is Q(). More over [Q(): Q]=2. 

  

(iii) Consider the polynomial x
6
+x

3
+1. As  x

9
-1= (x

3
-1)(x

6
+x

3
+1). Choose  as primitive 9

th
 root 

of unity. Then 1, , 
2 , 

3 , 
4 , 

5 , 
6 , 

7 , 
8  are the roots of the polynomial x

9
-1. 

Further, 1, 
3 , 

6  are the roots of the polynomial x
3
-1. Hence , 

2 , 
4 , 

5 ,  
7 , 

8  are the 

roots of the polynomial (x
6
+x

3
+1). Since all these roots are contained in the field Q(), Q() is 
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the splitting field of the polynomial x
6
+x

3
+1. If f(x)= x

6
+x

3
+1, then f(x+1)= (x+1)

6
+(x+1)

3
+1= 

(x
6
+6x

5
+15x

4
+20x

3
+15x

2
+6x+1)+ (x

3
+3x

2
+3x +1) +1= x

6
+6x

5
+15x

4
+21x

3
+18x

2
+9x+3. By 

Eisenstein Criterion  of irreducible, the polynomial x
6
+x

3
+1 is irreducible over Q. Hence [Q(): 

Q]=6. 

 

(iv) Show that algebraic extension may or may not be finite extension. 

Solution. Algebraic extension may be finite extension. Consider an extension )2(Q  of Q. 

Since every element of )2(Q  is of the form Qb,a;2bax  , therefore 22 b2)ax(  i.e. 

every element of )2(Q  satisfies a polynomial of degree at most 2. Hence every element of 

)2(Q  is algebraic over Q, therefore, )2(Q  is algebraic extension of Q. More over [ )2(Q

:Q]=2.i.e. it is a finite extension also. 

  Algebraic extension may not be finite extension. Consider the set S of all complex numbers 

which are algebraic over Q. Clearly it is an algebraic extension of Q. Let if possible, [S: Q]= n 

(some finite number ). Now consider the polynomial x
n+1

+2. It is irreducible over Q. (By 

Eisenstein criterion of irreducibility) If a complex number ‘a’ is a root of x
n+1

+2, then [Q(a): Q]= 

n+1. Further by our choice aS, therefore, Q(a)S.  But then we have that dimension of S as a 

vector space over Q is less then dimension of  subspace Q(a) of S over Q, a contradiction and 

hence a contradiction to the assumption that S is a finite extension of Q. It supports the result that 

every algebraic extension need not be finite extension. 

 

3.4 SIMPLE EXTENSION 

3.4.1 Definition. An extension K of F is called simple extension if there exist an  in K such that 

K=F().  

  

Example. Let K be an extension of F such that [K:F]=p , p is prime numer then K is a simple 

extension. 

 Solution. Let K . As K is finite extension of F,  is algebraic over F. Consider F( ).  Since, 

p >1, F . But then F() is a subfield of K containing F. Hence F( ) is the subspace of the 
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field K over F and hence dimension of F() as a vector space divides the dimension of K as a 

vector space over F i.e. [F():F] divides [K:F]. Because [F( ): F]>1, the only possible 

condition is that [F(): F]=p. But then K=F(). Hence K is a simple extension of F. 

 

3.5 CONJUGATE ELEMENTS 

3.5.1 Definition. Let K be an extension of the field F. Elements   and   of K are said to be conjugate 

over F if there exist an isomorphism )(F)(F:   such that  )(  and F)(  . 

In other words,   acts as identity mapping on F and take   to  . 

3.5.2 Theorem.  Let K be an extension of the field F and the elements   and   of K are algebraic 

over F. Then   and    are said to be conjugate over F if and only if they have the same minimal 

polynomial. 

 Proof. Let us suppose that   and   are conjugate over F. Further let 

01
)1n(

1n
n cxc...xcx)x(p  

   be the minimal polynomial of over F. Then 

01
)1n(

1n
n cc...c)(p0  

  . Now    

)cc...c()0(0 01
)1n(

1n
n  

  

 )c()()c(...)()c()(0 01
)1n(

1n
n  

  

Using the fact that  )(  and F)(  , above equation reduces to  

01
)1n(

1n
n cc...c0  

  i.e.   satisfies the polynomial p(x). Let r(x) be the minimal 

monic polynomial of  . But then r(x)|p(x) where p(x) is irreducible polynomial over F. Since 

r(x) and p(x) both are monic irreducible polynomials over F, we have r(x)=p(x). Hence   and     

have the same minimal polynomial. 

  Conversely, suppose that they have the same minimal polynomial p(x) of degree 

n. Then by Theorem 3.5.4,  [F():F]= [F( ):F]=n. Now 1,  , 
2 , …

1n  is a basis of F( ) 

over F and the general element of F( ) is a0+a1+a2
2 + …+an

1n ; a belongs to F. Similarly 

1,  , 2 , … 1n  is a basis of  F( ) over F and the general element of F( ) is a0+a1 +a2
2 + 
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…+an
1n . Define a mapping )(F)(F:  by 

1n
1n10

1n
1n10 a...aa)a...aa( 




  . Since ai are unique, therefore,   is well 

defined. Now we will show that   is an isomorphism. It is easy to see that   is one-one and 

onto mapping. Only thing is to show that it is a ring homomorphism. Let 
1n

1n10 a...aa 
   

and 
1n

1n10 b...bb 
    be the two arbitrary element of F( ). Then  

))b...bb()a...aa(( 1n
1n10

1n
1n10





   =

)))ba(...)ba()ba(( 1n
1n1n1100


   

=
1n

1n1n1100 )ba(...)ba()ba( 
   

=
1n

1n10
1n

1n10 b...bba...aa 



   

= )b...bb()a...aa( 1n
1n10

1n
1n10





  . 

Since 





 

1n

0i

i
i

1n
1n10 aa...aa , 






 

1n

0i

i
i

1n
1n10 bb...bb   Let 















1n

0i

i
i

1n

0i

i
i

1n

0i

i
i c)b)(a( , then 














1n

0i

i
i

1n

0i

i
i

1n

0i

i
i c)b)(a( . Consider the polynomial  

g(x) = 













1n

0i

i
i

1n

0i

i
i

1n

0i

i
i xc)xb)(xa(    (*)  

            in F[x],  

then )b)(a()(g
1n

0i

i
i

1n

0i

i
i 








  0c

1n

0i

i
i  




and then p(x)|g(x) i.e. g(x)=p(x)h(x). Since 

0)(p  , therefore, )(h)(p)(g  =0.  

Now by (*) )b)(a(
1n

0i

i
i

1n

0i

i
i 








 = 






1n

0i

i
ic i.e. 
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 )b)(a()b)(a(
1n

0i

i
i

1n

0i

i
i

1n

0i

i
i

1n

0i

i
i 
















 . Hence   is an isomorphism. More over if we 

choose a1=1 and ai=0 for all other i, then  )( and if we choose all ai=0 for i>0, then

00 a)a(   i.e F)(   showing that   is a non-zero isomorphism. It proves the result. 

 

3.5.3 Theorem. Let K be an extension of the field F and the elements   and   of K are 

transcendental over F. Then   and  are conjugate over F. 

 Proof. Consider the polynomial ring F[x]. Let F[] be the sub-ring of K generated by F and   

(similarly F[ ] is sub-ring of K generated by F and  ). Then the mapping  ][F]x[F:   

defined by Fc;c)xc( i

n

1i

i
i

n

1i

i
i  





 is an onto ring homomorphism. Further if 

)xd()xc(
n

1i

i
i

n

1i

i
i 





 , then 






n

1i

i
i

n

1i

i
i dc . This further implies that 0)dc(

n

1i

i
ii 


i.e.   

is algebraic over F, a contradiction that  is transcendental. Hence ii dc   and hence 








n

1i

i
i

n

1i

i
i xdxc i.e.   is one-one. Hence  is an isomorphism. Thus  

][F]x[F  .  Now   can be extended to a unique isomorphism )(F)x(F:  , defined by 

)(g

)(h
)

)x(g

)x(h
(




 , where F(x) is the field of quotient of F[x] and )(F   is the field of quotient of 

][F  . Now it is clear that  )x(  and  Faa)a(  . Similarly, we have an isomorphism 

)(F)x(F:   such that  )x(  and Faa)a(  . Consider the mapping 1 . Then  

)(F)(F:1  such that  )(1 . Since   and 
1  both are isomorphism, therefore, 

1 is also an isomorphism. Hence   and  are conjugate over F.  

 

3.6 CONSTRUCTION WITH STRAIGHT EDGE AND COMPASS 
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  In school class construction, by the use of scale and compass we can draw any line of 

given length, circle of given radius, and can construct right angle and sixty degree angle. Here we 

see that these constructions has a relation with algebraic extension. 

 

3.6.1 Definition. A real number   is said to be constructible by straight edge and compass if by the 

use of straight edge and compass we can construct a line segment of length  . Here by straight 

edge mean a fundamental unit length.  

 

3.6.2 Note. If a real number   is constructible by straight edge and compass we will use to say that   

is constructible.  

 

3.6.3 Theorem. Let F be a field. Then a point  is constructible from F if and only if we can find a 

finite number of real numbers 1, 2 ,…, n  such that          [F(1):F]= 1 or 2; [F(1, 2 ,…, i): 

F(1, 2 ,…, i-1)]= 1 or 2 for i=1, 2,…,n; and such that  lies in the plane of F(1, 2 ,…, n). 

 Proof. By a plane of F, we mean set of all points (x, y), where x and y are from F and a real 

number   is constructible from F if it is point of intersection of lines and circles in the plane of F 

or it is point of intersection of lines and circles in the plane of some extension of F. If we take 

two points (a1, b1) and  (a2, b2) in the plane of F then equation of line passing through these points 

is (b1-b2)x+(a2-a1)y +(a1b2)- a2b1=0 which is definitely of the form ax+by+c = 0 ; a, b, cF. 

Similarly we can see that equation of circle in the plane of F is x
2 

+ y
2 

+ ax + by + c=0. Since the 

point of intersection of two lines in the plane of  F always in F,  point of intersection of line and 

circles , circle with circle either lies in F or lies in the plane of F(  ) for some positive  in F. 

Thus line and circles of F leads to a point in F or in quadratic extension of F. 

  On similar steps as discussed above, we get that lines and circles in )(F 1  leads to a 

point in )(F 1  or in quadratic extension of ),(F 21  ,  for some positive 2 in )(F 1 . 

Continuing in this way we get a sequence of extensions such that 
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)],...,(F:),...,(F[ 1i1i1  = 1 or 2 for each i, positive real number i ),...,(F 1i1   

and  ),...,,(F n21  . 

 Now by above discussion, if  is constructible then we can find a finite number of real 

numbers 1, 2 ,…, n  such that [F(1):F]= 1 or 2; [F(1, 2 ,…, i): F(1, 2 ,…, i-1)]= 1 or 2 for 

i=1, 2,…,n and F(1, 2 ,…, n). 

     Conversely if F is such that   is a real number then  is a point of intersection of 

lines and circles in the plane of F. Now F(1, 2 ,…, n) , therefore,  is a point of intersection 

of lines and circles in the plane of F(1, 2 ,…, n-1). Hence  is constructible. In other words a 

real number  is constructible from F if and only if we can find real numbers 1, 2 ,…, n such 

that F2
1 , ),,(F 1i21

2
i   for i=1, 2, …, n such that F(1, 2 ,…, n).  

 

3.6.4 Note. Since it quite easy to see that every rational number is constructible, therefore, by above 

theorem a real number  is constructible, we start from F0, the field of rational numbers and get 

an extension of F0 in which  lies. 

3.6.5 Theorem. A real number  is constructible from F0 if and only if we can find real numbers 1, 2 

,…, n such that 0
2
1 F , ),,(F 1i210

2
i   for i=1, 2, …, n such that F0(1, 2 ,…, n). 

Proof. Replace F by F0 in the proof of Theorem 3.7.3.    

3.6.6 Corollary. If  is constructible, then  lies in some extension F of F0 of degree a power of 2. 

 Proof. As we know that real number  is constructible if and only if we can find a finite number 

of real numbers 1, 2 ,…, n  such that 0
2
1 F , ),,(F 1i21

2
i   for i=1, 2, …, n such that 

F(1, 2 ,…, n). But then  [F0(1, 2 ,…, i): F0(1, 2 ,…, i-1)]= 1 or 2 = ia2 , ai=0 or 1, for 

i=1, 2,…,n. Since   [F0(1, 2 ,…, n): F0]= [F0(1, 2 ,…, n): F0(1, 2 ,…, n-1)] [F0(1, 2 ,…, 

n-1): F0(1, 2 ,…, n-2)]… [F0(1): F0]= 11nn a...aa2   is a power of 2.  
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3.6.7 Corollary. If a real number  satisfies an irreducible polynomial over the field of rational 

numbers of degree k, and if k is not a power of 2, then  is not constructible. 

Proof. Since a real number   is constructible if and only if it lies in an extension K of F0, a 

power of 2. If  satisfies an irreducible polynomial of degree k then [F0():F]=k. Since k is odd, 

it can not be a power of 2 and hence it is not constructible. 

    

3.6.8 Theorem. Prove that 60

 angle is constructible. 

 Proof. As we know that if an angle  is constructible if and only if  cos is constructible. Let 

=60

 , then cos=cos60

 
=

2

1
 cos-

2

1
=0 i.e. cos satisfies an irreducible polynomial of 

degree 1=2
0
, a power of 2, over the field of rationals. Hence cos is constructible and hence 

=60

 is constructible.  

 

3.6.9 Theorem. Prove that it is impossible, by straight edge and compass alone, to trisect 60

 

angle. 

 Proof. By the trisection of 60

 angle by straight edge and compass alone mean we have to 

construct 20

. As we know that 20


 is constructible iff cos20


 is constructible. Let =20


. Then 

3=60

 and cos3=cos60


. But then 4cos

3
-3cos=

2

1
 or 8cos

3
-6cos-1=0 i.e. cos satisfies the 

polynomial 8x
3
-6x-1. Let f(x)= 8x

3
-6x-1, then f(x-1)= 8(x-1)

3
-(6x-1)-1= 8x

3
-24x

2
+18x-3. Since 3 

is a prime number which divides every coefficient, except the leading coefficient of the 

polynomial f(x-1) and 3
2
 does not divide constant coefficient of the polynomial f(x-1). Then by 

Eisenstein criterion of irreducibility, f(x-1) is an irreducible polynomial over field of rational 

numbers. But then f(x) is also irreducible over field of rational numbers. Therefore,  

[Q(cos):Q]=3 which is not a power of 2. Hence cos is not constructible. Equivalently  is not 

constructible. Hence we can not trisect 60

 by straight edge and compass alone. 

    

3.6.10 Theorem. By straight edge and compass it is impossible to duplicate the cube. 
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 Proof. As by duplicate of a cube means construction of cube whose volume is double the volume 

of given cube. Let us consider the cube of unit length side. Then the volume of cube is 1. For 

duplicating this cube, we have to construct a cube of volume 2 units i.e. we have to construct a 

number   such that 
3
=2. Since 2 is a prime number which divides every coefficient, except the 

leading coefficient of the polynomial x
3
-2 and 2

2
 does not divide constant coefficient of the 

polynomial x
3
-2. Then by Eisenstein Criterion of irreducibility, x

3
-2 is an irreducible polynomial 

over field of rational numbers. Hence [Q():Q]=3 i.e.  is not constructible. It proves the result. 

 

3.6.11 Theorem. Prove that it is impossible to construct a regular septagon. 

 Proof. Since for construction of regular septagon we need the construction of an angle 
7

2
 . We 

will show that 
7

2
   is not constructible. Equivalently we have  to show that cos  is not 

constructible. Since  

   27   4 =2-3  cos 4 =cos(2-3) cos 4 = cos3 

 2cos
2
2-1 =4 cos

3
- 3cos  

 2(2cos
2
-1)

2
 -1=4 cos

3
- 3cos 

 8cos
4
 +1-8cos

2
 =4 cos

3
- 3cos 

8cos
4
 - 4 cos

3
- 8cos

2
+3cos+1=0 

    (cos -1)(8cos
3
 +4 cos

2
- 4cos-1)=0 

Since for given , cos  1, therefore, cos-10. Hence cos satisfies the polynomial  f(x)=8x
3
 

+4x
2
- 4x-1. Since  f(x+1)=8(x+1)

3
 +4(x+1)

2
- 4(x+1)-1 = 8(x

3
+3x

2
+3x+1)+4(x

2
+2x+1)-4(x+1)-1= 

8x
3
+28x

2
+28x+7.  

Since 7 is a prime number which divides every coefficient, except the leading coefficient of the 

polynomial f(x+1) and 7
2
 does not divide constant coefficient of the polynomial f(x+1). Then by 

Eisenstein Criterion of irreducibility, f(x+1) is an irreducible polynomial over field of rational 

numbers. But then f(x) is also irreducible over field of rational numbers. By above discussion we 

get that cos satisfies an irreducible polynomial of degree three. Hence cos is not constructible. 

It proves the result. 
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3.7 CHECK YOUR PROGRESS 

 Q (i) Write the general element of  ( 
 

 )  over Q 

 Q(ii)  Write the degree of extension of  ( 
 

   
 

 ) over Q 

 Q(iii) Is regular octagon constructible? 

 

3.8 SUMMARY.  

            Algebraic, transcendental, simple extensions, conjugate element, roots of a polynomial over the 

field F and application of algebra in geometrical constructions are studied in this Chapter. 

 

3.9 KEY WORDS.  

 Algebraic, Transcendental, Root, Simple, Conjugate, Construction,  Straight edge,  Compass. 

 

3.10 SELF ASSESMENT QUESTIONS. 

 (1) Prove that sin m

 is constructible. 

 (2) Prove that regular pentagon is constructible. 

  (3) If aK is algebraic of degree n, then [F(a):F]=n. 

 (4) Prove that regular 9-gon is not constructible. 

 (5) Prove that it is possible to trisect 72

 by straight edge and compass. 

 

3.11 ANSWERS TO CHECK YOUR PROBLEM 

Answer to Q(i) For it read the proof of the Theorem 3.2.4, you will find that the  general element 

of  ( 
 

 )   is           
     

     
 , where    

 

 . 

Answer to Q(ii) With the help of corollary 3.2.10, you will see that the answer is 20. 

Anwer to Q(iii) As the exterior angle of regular octagon is    , which is constructible, therefore, 

regular octagon is constructible. 
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MAL-511: M. Sc. Mathematics (Algebra-I) 

Lesson No. 4                                                               Written by Dr. Pankaj Kumar 

                                                                                     Vetted by Dr. Nawneet Hooda 

Lesson: Field Extensions-III 

 

Structure: 

 4.0 Learning Objective 

 4.1 Introduction 

4.2 Algebraically closed field 

 4.3 More about roots of a polynomial 

 4.4 Separable extensions 

 4.5 Some definitions 

  4.6 Symmetric rational functions 

  4.7 Normal extension 

4.8 Check Your Progress 

4.9 Summary 

4.10 Key words 

4.11 Self-Assessment Test 

4.12 Answers to check your progress 

4.13 References/ Suggested readings 

 

4.0   LEARNING OBJECTIVE. Objective of this lesson is to study about normal and 

separable extension.  

 

4.1   INTRODUCTION. In previous Chapter we came to know about some extension and 

splitting fields of polynomial f(x) in F[x] over F. There are many fields which have no proper 

algebraic extension; we call such field as algebraically closed fields which are studied in Section 

4.2. Separable extensions are studied in Section 4.4. In Section 4.6, we study about rational 
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symmetric functions. Now there is an interesting point “Does there exist an extension K of F such 

that if it has a root of an irreducible polynomial p(x)F[x], then it contains all the root of that 

polynomial, We call such an extension as normal extension of F which are studied in Section 4.7.  

  

4.2 ALGEBRAICALLY CLOSED FIELD. 

4.2.1 Definition (Algebraically closed Field). Field F is called algebraically closed if it has no proper 

algebraic extension. i.e. if K is an algebraic extension of F then K=F. 

 

4.2.2 Theorem. Let F be a field. Then the following conditions are equivalents: 

 (i) F is algebraically closed. 

 (ii)  Every non constant irreducible polynomial in F[x] is of degree 1.  

 (iii) Every polynomial of positive degree in F[x] can be written as the product of linear factors in 

F[x]. 

 (iv) Every polynomial of positive degree in F[x] has at least one root in F. 

 Proof. (i)(ii) 

     Let F be algebraically closed and let f(x) is an irreducible polynomial of degree n 

in F[x]. Since f(x) is irreducible, there exist an extension K of F such that [K:F]=n, containing at 

least one root of f(x). Since K is a finite extension of F, therefore, K is algebraic extension of F. 

But F is algebraically closed, therefore, K=F. Hence n=1 and hence every irreducible polynomial 

in F[x] is of degree 1. 

  (ii)(iii) 

    Let f(x) be a non constant polynomial in F[x]. Then by unique factorization 

theorem on polynomials, polynomial f(x) can be written as the product of irreducible polynomials 

over F. By (ii), every irreducible polynomial is of degree 1, therefore, every polynomial over F 

can be written as the product of linear factor in F[x]. 

  (iii)(iv) 

    Let f(x) be a polynomial of degree n(1) over F. Then by (iii),          f(x)=α(x-a1) 

(x-a2)… (x-an); aiF. Since ai’s are roots of f(x) which all lies in F, proves (iv). 

  (iv)(i)  
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    Let K be an algebraic extension of F and k be an arbitrary element of K. let f(x) be 

the minimal polynomial of k over F. By (iv), f(x) has at least one root in F. let  α be that root. 

Then f(x)=(x-α)g(x), where g(x) is in F[x]. On applying the same process on g(x) and continuing 

in this way we get every root of f(x) lies in F. Hence k lies in F, therefore, KF, but then K=F. 

Hence F is algebraically closed. 

 

4.2.3 Theorem. Algebraically closed fields can not be finite. 

  Proof. Let F be an algebraically closed field. If possible it has finite number of element say a1, 

a2,…, an . Consider the polynomial (x-a1)(x- a2)…(x-an)+1. This is a polynomial in F[x] which 

has no root in F, a contradiction that F is algebraically closed. This contradiction proves that F 

can not be finite. 

   

  Example. The field C (field of complex numbers) is algebraically closed.   

 

4.3  MORE ABOUT ROOTS. 

4.3.1 Definition. Let n1n
n

0 x....x)x(f    be a polynomial in F[x], then the derivative of 

f(x), written as )x(f ' is the polynomial 1n
1n

0 ....xn 
   in F[x].  

 Example. Consider the polynomial 1
3

0x  over the field F with characteristic 3, then the 

derivative of this polynomial is zero over F. 

 

4.3.2 Theorem. For f(x) and g(x) in F[x] and any α in F, 

 (i) )x(g)x(f))x(g)x(f( '''   

 (ii) )x(f))x(f( ''   

 (iii) )x(g)x(f)x(g)x(f))x(g)x(f( '''   

 Proof. These results can easily be proved by use of Definition 4.3.1. 
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4.3.3 Theorem. The polynomial f(x) in F[x] has a multiple root if and only if f(x) and )x(f '  have non 

trivial common factor. 

 Proof. Since we know that if f(x) and g(x) in F[x] have a non trivial common factor in some 

extension K of F, then they have a non trivial common factor in F[x]. So, without loss of 

generality suppose that all the roots of f(x) lies in F. Let α be a root of f(x) multiplicity m>1, then

)x(g)x()x(f m . But then )x(t)x()x(g)x()x(g)x(m)x(f 'm1m'   i.e. (x-α) 

is a common factor of f(x) and )x(f ' . 

    Conversely suppose that f(x) has no multiple root, then 

)x)...(x)(x()x(f m21  ; degree of f(x)=m. Then 





m

1i
mi1

' )x...()x()...x()x(f , where  denote that term is omitted. From here we see 

that no i  is a root of the polynomial 



m

1i
mi1

' )x...()x()...x()x(f , therefore, they 

have no non trivial factor in common. In other words, f(x) and )x(f '  have a non trivial common 

factor if and only if f(x) has multiple root. 

 

4.3.4 Corollary. If f(x) be an irreducible polynomial in F[x], then 

  (i) If the characteristic of F is zero, then f(x) has no multiple roots 

  (ii) If the characteristic of F is p0, f(x) has a multiple root if it of the form f(x)= g(x
p
). 

  Proof. (i)Since f(x) is irreducible, its only factors are 1 and f(x) in F[x].  Let f(x) has multiple 

roots, then f(x) and )x(f ' has a nontrivial common factor. It mean f(x)| )x(f ' . As )x(f '  is a 

polynomial of degree lower then f(x), the only possibility choice is that that )x(f ' =0. But in case 

when characteristic of F is zero, )x(f ' can be 0 only when f(x) is constant polynomial. Hence f(x) 

has no multiple root in F.  
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  (ii) Let n
i

i
n

n xx...x)x(f  , then 0)x(f '   only when ii =0 ; 2 i n. Since 

characteristic of F is p0,  ii =0 only when p| ii . But p does not divide i , therefore p|i. Hence 

i=pki for some ki. Consequently  )x(gx...xx...x)x(f p
n

pk
i

pk
nn

i
i

n
n

in  . 

 

4.3.5 Corollary. If the characteristic of F is p0, then for all n 1, the polynomial ]x[Fxxp   has 

distinct roots. 

  Proof. As the derivative of the polynomial 11pxxx 1pp    in F, the polynomial and its 

derivative has no non trivial factor in common. Hence polynomial xxp  has no multiple roots 

i.e. all the roots of the polynomial xxp  are distinct. 

 

4.4 SEPARABLE EXTENSIONS. 

4.4.1 Definition. Separable polynomial. Let p(x) be an irreducible polynomial in F[x], then p(x) is 

called separable over F if it has no multiple root in its splitting field. In other words we say that 

all the roots of p(x) are distinct. Otherwise p(x) is called inseparable polynomial over F.  

 

4.4.2 Definition. An arbitrary polynomial f(x) is separable over F, if all its irreducible factors are 

separable over F. 

 

4.4.3 Definition. An element a in extension K of F is called separable over F, if it satisfies some 

separable polynomial over F. In particular, if it’s minimal polynomial is separable over F. 

 

4.4.4 Separable extension. An algebraic extension K of F is called separable extension of F if every 

element of K is separable over F. 

  

 Example (i). Let F be field with characteristic zero. Then every algebraic extension K of F is 

separable. 
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 Solution.  Let a be an arbitrary element of field K. Since K is algebraic extension, therefore, a 

satisfies some irreducible polynomial over F. By Corollary 4.2.4(i), this polynomial has no 

multiple root.  Therefore, minimal polynomial of  a  over F is separable. Hence K is separable 

extension of F.  

  

4.4.5 Theorem. Let characteristic of F is p(0). Then every algebraic extension K of F is separable if 

and only if the mapping  : FF given by (a)=a
p
 is an automorphism of F. 

 Solution. Suppose (a)= a
p
   aF. Then 

   p22p
2

p1p
1

ppp b...baCbaCa)ba()ba(   . But for 1 i  p-1, each i
pC  is 

a multiple of p and hence is zero in F, therefore, )b()a(ba)ba( pp   and  

)b()a(ba)ab( pp  . Hence   is a ring homomorhism on F. Further, suppose that pp ba   

which further implies that 0)ba( p  . But then a-b =0 i.e. a=b. showing that   is one-one also. 

If   is onto also, then we have b in F such that  (b)=a i.e. b
p
=a. Equivalently we say that p

th 
root 

of every element is also contained in F. 

      Now we prove theorem as: Let K be an algebraic extension of F 

and   be an automorphism on F given by pa)a(  .  Let a be arbitrary element of K and g(x) be 

the minimal of polynomial of a over F. Then g(x) is irreducible polynomial over F. Let if 

possible g(x) has multiple roots. Since characteristic of F is p0, by Corollary 4.2.4(ii), 

g(x)=h(x
p
)= r

p
1r

rp
0 x...x   ; rp=n =degree of g(x). Since with the help of   we can 

identify  
p
ii   in F, therefore, h(x

p
)= 

p
r

pp
1r

rpp
0 x...x   . Again with the help of   we 

have 

       h(x
p
)=

p
r1r

r
0 )x...x(   . 

  Then g(x)=
p

r1r
r

0 )x...x(    is a reducible polynomial over F, a contradiction and hence 

a contradiction to the assumption that g(x) is not separable. Now it follow that every algebraic 

extension K of F is separable.  
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    Conversely suppose that every algebraic extension K of F is separable. We will 

show that (a)=a
p
  is an automorphism on F. Since this mapping is one–one homomorphism. In 

order to show that  is an automorphism, it is sufficient to show that  is onto also. Let if 

possible  is not onto i.e. there exist aF such that (b)a for all b in F. In other words, there 

does not exist b in F such that b
p
=a. Simply we say that polynomial   f(x)= x

p
-a has no root in F. 

Let α1, α2, ..., αp be the roots of x
p
-a. Then K=F(α1, α2,..., αp) is the splitting field of f(x). Further 

if α and  are two roots of f(x), then  α
p
-a=0 and 

p
-a=0. But then α

p
-

p
=0. Equivalently, α=. 

Thus all the roots of f(x) are equal. Let α1= α2=...=αp =α. Then K=F(α).  

    Now   x
p
-a = x

p
- α

p 
= (x-α)

p
.  Since α is algebraic over F and does not belong to F, 

therefore, degree of α is more than one. Let g(x) be the minimal polynomial of α over F. Since α 

satisfies the polynomial f(x) also, therefore, g(x) divides f(x). Let h(x) be a monic irreducible 

factor of f(x), then α is a root of h(x). Hence g(x)|h(x) and hence g(x)=h(x). But then f(x)=g(x)
r
. 

Now p=deg(f(x)) = deg(g(x)
r
)=r deg(g(x)). Since deg(g(x))>1, therefore, deg(g(x))=p. Hence r=1. 

But then f(x) becomes the minimal polynomial for α. As f(x) has multiple roots (namely α), 

therefore, f(x) is inseparable polynomial. Hence α is not separable   and hence K=F(α) is 

inseparable. Since K is algebraic extension of F which is not separable extension of F, a 

contradiction. This contradiction proves that   is an automorphism on F.   

 

4.4.6 Corollary. If F is a finite field then every algebraic extension of F is separable. 

 Proof. Since F is finite field, its characteristic is finite prime number p (say). Since characteristic 

of F is p, therefore, mapping  :FF, defined by  (a)=a
p
 for all aF, is an one-one 

homomorphism. Since F is finite, this mapping is onto also. Hence is an automorphism on F. 

Now by Theorem 4.3.4, every algebraic extension of F is separable also. It proves the result. 

 

4.4.7 Problem.  Let F be a field with characteristic p(0). Then element a lying in some extension of F 

is separable over F if and only if F(a
p
)=F(a). 

 Solution. Let K be an extension of F and aK be separable over F. The minimal polynomial f(x) 

= 
n1n

1n10 xx...x  
  of a over F is separable. Let g(x) = 
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n1np
1n

p
1

p
0 xx...x  

 . Then 
pn)1n(pp

1n
pp

1
p
0

p aa...a)a(g  
 . Since the 

characteristic of F is p(0), therefore, )a(g p =
pn1n

1n10 )xx...x(  
 = p)a(f  =0 i.e. a

p
 

is a root of g(x).  Also g(x) is irreducible over F. In fact if h(x) is a factor of g(x), then h(x
p
) is a 

factor of g(x
p
) in F[x]. But g(x

p
)=f(x)

p
 and f(x) is irreducible over F implies that h(x

p
) =f(x)

k
 ; 0 

k  p. Since the derivative of h(x
p
) with respect to x  is zero over F, therefore taking derivative of 

h(x
p
)=f(x)

k
 on both sides, we get 0)x(kf 1k'  . But then k = 0 or p.  

    For k=0, h(x)=1. For k=p, h(x
p
) =f(x)

p
 i.e. h(x

p
)= g(x

p
) and hence h(x)=g(x). Here 

we see that the only divisors of g(x) are 1 and g(x) itself. Hence g(x) is irreducible over F. Then 

[F(a
p
): F]=n=degree of g(x). As      [F(a): F]=n, we get [F(a

p
): F]=[F(a): F]. Since a

p
F(a), 

therefore F(a
p
)F(a) .  Now by above discussion F(a

p
)=F(a). 

     Conversely, let F(a
p
)=F(a) and suppose that a is not separable over over F. The 

minimal polynomial of a over F is not separable. This gives that f(x)=g(x
p
) and so a

p
 is a root of 

g(x). Clearly degree of g(x) is m
p

n
 (say). Hence [F(a

p
): F]  m < n. Since F(a

p
)=F(a) , 

therefore,  

    [F(a): F]= [F(a):F(a
p
)][F(a

p
): F] m i.e. n<m,  

  which is not true. Hence a contradiction to our assumption that a is not separable. Hence a is 

separable over F.   

 

4.5. SOME DEFINITION.  

4.5.1   Definition. Let K be field. An isomorphism from K to itself is called an automorphism on K.  

Two automorphisms  and  of K are said to be distinct if (a)  (a) for some a in K.  

 

4.5.2   Theorem. If K is a field and if n21 ,...,,   are distinct automorphisms of K, such that 

Ku0)u(a...)u(a)u(a nn2211  then all n21 a,...,a,a  are 0 in K.  
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 Proof. Let if possible we can n21 a,...,a,a  in K, not all 0, such that 

Ku0)u(a...)u(a)u(a nn2211  . Remove all ai=0, then after renumbering we 

obtain the minimal relation such that  

    0)u(a...)u(a)u(a mm2211    (1) 

  for all Ku and each mi1,0ai  . 

  Since  Ku0)u(1  , therefore, if Ku0)u(a 11  , then a1 must be zero in K, a 

contradiction that all ai in (1) are non zero, therefore, m>1. As the automorphisms are distinct, 

therefore, there exist an element c in K such that )c()c( m1  . Since cuK, therefore, by (1) 

    0)cu(a...)cu(a)cu(a mm2211   

  0)u()c(a...)u()c(a)u()c(a mmm122111    (2) 

   On multiplying (1) by )c(1  and subtracting it from (2) we get 

   0)u())c()c((a...)u())c()c((a m1mm2122   (3) 

  Since am0 and by our choice 0)c()c( 1m  , therefore, we get a relation in which at least 

one of ai0 and containing at most m-1 terms, a contradiction that (1) is the minimal relation. 

Hence contradiction to the assumption that   

  Ku0)u(a...)u(a)u(a nn2211   and at least one of ai0. Therefore, if 

Ku0)u(a...)u(a)u(a nn2211  then each ai=0. 

 

4.5.3   Definition. Fix Field of G. Let G be a group of all automorphism of K, then the fixed field of G 

is the set of all elements ‘a’ of K such that Ga)a(  .  In other words, the fixed field of G 

is the set of all elements of K which are left fixed by every element of G.   

 

4.5.4    Lemma. Prove that fixed field of G is a subfield of K. 

 Proof. Let a, b be two elements of the fixed field. Then Ga)a(   and Gb)b(  . 

But then ba)b()a()ba(   G . Hence   a-b belongs to fixed field of G. As 

)bb(e 1 G)b()b( 1    implies that G)b())b(( 11    and 
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G)b())b((b 111   . Hence 1b  also belongs to the fixed field of G. Now )ab( 1  

Gab))b()(a()b()a( 111    i.e. ab
-1

 belongs to fixed field of G. Hence fixed 

field of G is a subfield of K.  

 

4.5.5 Definition.  Group of automorphism of K relative to F. Let K be an extension of the field F. 

Then the group of automorphism of K relative to F is the set of all automorphisms of K which 

leaves every element of F fixed. It is generally denoted by G(K, F) . Hence   G(K, F) if and 

only if  (α)= α  for every α  in F. 

 

4.5.6 Lemma. Prove that G(K, F) is a subgroup of the group of all automorphisms of K. 

 Proof. Let )F,K(G21  . Then  )(1  and  )(2 for all .F  Since 

F)()( 1
22   , therefore, 1

2
  belongs to G(K, F). Now 

F)()(())(( 1
1

21
1

21   . Hence )F,K(G1
21    and hence )F,K(G  is a 

subgroup of the group of all automorphism of K. 

  

  Example (i) Let K be the field with characteristic zero, then show fixed field of any group of 

automorphisms of K contains Q (the field of rational number). 

 Solution. Let H be a subgroup of group of automorphisms on K and F be fixed field of H. Then F 

is a subfield of K. Let 
b

a
  be an arbitrary element of Q and   be an arbitrary element of H. Since 

F1 , therefore, 1)1(  . Now 
timesa

1...11a   , therefore, 

a))1(...)1()1()1...11()a(

timesatimesa

     for all  H . Hence Fa . Similarly Fb .  

As F is a field, therefore, b
-1

 and hence  ab
-1
 F.  Q  F.  

  

 Example (ii). Show that every automorphism   of K, field with characteristic zero, leaves every 

rational number fixed.  
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 Solution. Since Q is a prime field, Q is contained in every field with characteristic zero. Let e be 

the unit element of K, then e is unit element of Q also. Let   be an arbitrary automorphism  of K.   

Since e.e = e, therefore, )e()e()e()e()e.e(  , but then  )e(.e)e()e(  . Hence 

e)e(  .  Further  
timesa

e...eea  , therefore, a))e(...)e()a(

timesa

    . Similarly, b)b(  . 

Therefore, a and b belongs to the fixed field of group of automorphism of K which contains  . 

Hence ab
-1

 also belongs to the same fixed field. But then Q
b

a

b

a
)

b

a
(  . It proves the result.    

 Example (iii). Let K be the field of complex numbers and F be the field of real number. Find 

G(K, F) and the fixed field under G(K, F). 

 Solution. General element of K is a+ib, a and b are real numbers. Let  G(K, F), then (a)=a  

and (b)=b. Since i
2
=-1, therefore, (i

2
)= (-1)= -1.  

 As (i
2
)= (i)

2
= -1, therefore, (i)=i or –i. Then we have two elements in G(K, F), 1 and 2 

where 1(a+ib)=a+ib  and 2(a+ib)=a-ib. Hence G(K, F) ={1 , 2}. Let c+id is in the fixed field 

of G(K, F), then 1(c+id)= 2(c+id). But then c+id=c-id, which holds only when d=0. Hence 

fixed field contains only real number. Here in this case the fixed field is F itself. 

 Example (iv). Let F=Q (the field of rational numbers) and K= )2(Q 3

1

. Find G(K, F) and the fixed 

field of  G(K, F).  

 Solution. The general element of the field K is 3

2

3

1

2.c2.ba  , a, b, cF.  Put 3

1

2 . Then 

general element of K is 
2.c.ba  . Let G(K, F), then (a)=a,   (b)=b  and  (c)=c.  Since 

23  , therefore, 2)2()( 3  . Hence 2)( 3  . As the only root of 2)( 3  , 3

1

2 ,  

lies in K. Hence  )( . But then 22 .c.ba).c.ba(  i.e.  is identity 

transformation. Hence G(K, F)={I}. Trivially the fixed field of G(K, F) is K itself.  

  

 Example (v).  Let F=Q and K= Q(),  is  primitive fifth root of unity i.e.  satisfies the 

polynomial 432 xxxx1   which is irreducible over F. Therefore, General element of K is 
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3
3

2
210   F,,,; 3210  .  Let G(K, F). Then  and () are conjugate 

over F i.e. () is also a root of polynomial 432 xxxx1  . Since the roots of above 

polynomial are  , 
2
, 

3
, 

4
, therefore,  

                  ()=    or  
2
   or  

3
   or  

4
. If ()=  

i
 , 1 i  4, denote  by i. Then G(K, 

F)={ 1, 2, 3, 4}. If we denote the fixed field of G(K, F) by )F,K(GK ,  then 

3
3

2
210   )F,K(GK  if  

   )( 3
3

2
2101   = )( 3

3
2

2102   

   )()( 3
3

2
2104

3
3

2
2103  . 

  Using the fact that 15  , above  equalities reduces to ,  

   
3

3
2

210  =  3
4

2
2

10  =
4

32
3

10  =

2
3

3
2

4
10  .  

  Since 1+ + 
2
+ 

3
+ 

4
=0, therefore,  

4
=-1-- 

2
-

3
. But then the above equality reduces to  

    
3

3
2

210   

    =
3

2
2

212320 )()(   

    =
3

31
2

33230 )()(   

    =
3

12
2

13110 )()(  . 

  These equality will hold simultaneously if 0321  . Hence the general element of 

)F,K(GK  is 0  i.e. )F,K(GK =F. 

  Further, 2
2 )(  , )()( 4

42
2  , )()( 3

33
2   and )()(4

2   i.e. 

I4
2   of  G(K, F). Hence G(K, F)={ 4

2
3
2

2
2

1
2 ,,,  } is a cyclic group generated by 2 . 

Consider the subgroup H = {1, 4} of G(K, F). Let 
3

3
2

210   KH . Then 

     )( 3
3

2
2101   = )( 3

3
2

2104   
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  Equivalently,  

    
3

3
2

210  =
2

3
3

2
4

10   

  On further simplification, we can write 

    
3

3
2

210   =
3

12
2

13110 )()(  . 

  These two will be equal if 01   and 32  . Hence general element of KH is 

)( 32
20  . Here we observe that index of H in G(K, F) i.e. no of distinct coset of H in 

G(K, F)= [KH:F]. 

 

4.5.7  Theorem. If K is a finite extension of F, then G(K, F) is a finite group and its order , o(G(K, F)) 

 [K:F]. 

  Proof. Let [K:F]= n with u1, u2,…, un is a basis of K over F. Further suppose that 1n21 f...,,f,f   

are distinct automorphisms of K. Consider the system of n homogeneous equation in (n+1) 

variable x1, x2, …, xn+1 as: 

    0x)u(f...x)u(fx)u(f 1n11n212111   , 

    0x)u(f...x)u(fx)u(f 1n21n222121   , 

    . 

    . 

    . 

    0x)u(f...x)u(fx)u(f 1nn1n2n21n1   . 

  It always has a non trivial solution say x1=a1, x2=a2,     xn+1=an+1, in K. 

  Therefore,  

    0a)u(f...a)u(fa)u(f 1n11n212111    

    0a)u(f...a)u(fa)u(f 1n21n222121   , 

    . 

    . 

    . 
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    0a)u(f...a)u(fa)u(f 1nn1n2n21n1   . 

  Let u be the arbitrary element of K, then u= nn11 u...u  ; αiF. Since 

     )u(fa...)u(fa)u(fa 1n1n2211   

       = )a)u(f...a)u(fa)u(f( 1n11n2121111   

    + )a)u(f...a)u(fa)u(f( 1n21n2221212   

    . 

    . 

    . 

    + )a)u(f...a)u(fa)u(f( 1nn1n2n21n1n  . 

  Now by above discussion, 

  Ku0)u(fa...)u(fa)u(fa 1n1n2211   . But then by Theorem 4.5.2, each ai=0, A 

contradiction and hence contradiction to the assumption that  

  o(G(K, F)) > [K:F]. Hence o(G(K, F))  [K:F]. 

 

4.6       SYMMETRIC RATIONAL FUNCTIONS. 

4.6.1  Definition. Ring of polynomials in n variables. Let F be a Field. An expression of the form 

n1
n1

i
n

i
1ii x...x... ;  F,...,

n21 iii   is called polynomial in n variables x1, x2,…, xn. The set 

of all such polynomials is denoted by F[x1, x2,…, xn]. If we define component wise addition as 

one operation and multiplication of the polynomial using distributive laws as the second 

operation. Then F[x1, x2,…, xn] becomes ring.  

        If F is field, F[x1, x2, …, xn] becomes an integral 

domain. Now we can talk about field of quotient of F[x1, x2, …, xn]. It is denoted by F(x1, x2,…, 

xn). It elements are quotient of polynomials from the ring F[x1, x2, …, xn]. Let Sn be the 

symmetric group of degree n considered to be acting on the set {1, 2, …, n}. Let 

)x...,,x(F)x...,,x(r n1n1  . Define the action of  nS on )x...,,x(r n1  by 

)x...,,x(r))x...,,x(r( )n()1(n1  . Now we define: 
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4.6.2 Symmetric rational function. Let )x...,,x(F)x...,,x(r n1n1   . Then )x...,,x(r n1 is called 

symmetric rational function in )x...,,x(F n1  if   )x...,,x(r))x...,,x(r( n1n1   for all nS . 

In other words, these are the rational functions which are left fixed by Sn. Since symmetric 

rational functions lies in the fixed field of Sn. They form subfield of )x...,,x(F n1 . Let S denote 

the field of symmetric rational functions. 

 Example. Function given below are elementary rational function.. 

 (i)  If 211 xxa  , 212 xxa  , then 1a , 2a , are elementary symmetric functions in 1x  and 2x . 

 (ii) If 3211 xxxa  , 1332212 xxxxxxa  , 3213 xxxa  , then 1a , 2a ,  

 3a ,  are elementary symmetric functions in 1x ,  2x  and 3x . 

 (iii) If 43211 xxxxa  , 4342324131212 xxxxxxxxxxxxa  ,  

 4324314213213 xxxxxxxxxxxxa  , 43214 xxxxa  , then 1a , 2a ,       3a ,  4a  are 

elementary symmetric functions in 1x ,  2x , 3x  and 4x . 

 (iv) If 



n

1i
i1 xa , 




ji
ji2 xxa , k

kji
ji3 xxxa 


 ,…, 




n

1i
in xa , then 1a , 2a , 3a ,…, na ,  are 

elementary symmetric functions in n21 x...,,x,x .  

  

4.6.3  Theorem. Let F be field and )x...,,x(F n1  be the field of rational functions in  n1 x...,,x over F. 

Suppose that S is the field of symmetric rational functions; then  

 (i) [ )x...,,x(F n1 :S]=n! 

 (ii) G( )x...,,x(F n1 , S)=Sn, the symmetric group of degree n. 

 (iii) If a1, a2, …, an are the elementary symmetric functions in n21 x...,,x,x , then 

)a...,,a(FS n1 . 

 (iv) )x...,,x(F n1 is the splitting field of over S)a...,,a(F n1   of the polynomial 

n
n

2n
2

1n
1

n )1(a...tatat   .  
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  Proof. (i) As Sn is the symmetric group of degree n on set {1, 2,…, n} and G( )x...,,x(F n1 , S) is 

a group of automorphisms of )x...,,x(F n1 which leaves every element of S fixed. Let

S)x...,,x(r n1  . Then by definition of symmetric rational function, for nS , 

)x...,,x(r))x...,,x(r( n1n1   S)x...,,x(r n1  . But then by definition 4.5.5, 

)S),x...,,x(F((G n1 . Hence  o(G( )x...,,x(F n1 ,S)  n!. By Theorem 4.5.7,                    

   [ )x...,,x(F n1 : S]  o(G( )x...,,x(F n1 ,S)  n!    (*) 

  As a1, a2,…, an are elementary symmetric functions in x1, x2,…, xn, therefore, a1, a2,…, an are 

contained in S. But then F(a1, a2,…, an)S. Hence  

      , (       )  (       )- 

                           , (       )  -,   (       )-         (**)  

  Consider the polynomial  

    n
n2n

2
1n

1
n a)1(...tatat   . 

  It is polynomial over )a...,,a(F n1 . Since a1, a2,…, an are elementary symmetric functions in x1, 

x2,…, xn, therefore, we have  

   n
n2n

2
1n

1
n a)1(...tatat   = )xt)...(xt)(xt( n21  . 

  Here we see that x1, x2,…, xn are the roots of above polynomial, therefore, )x...,,x(F n1  is 

splitting field of  n
n2n

2
1n

1
n a)1(...tatat   , proving (iv). Further we know that if K is the 

splitting field of some polynomial f(x) of degree n over the field F, then [K:F]n! . Hence  

   , (       )  (       )-       (***) 

  By (*) and (**) we get that 

    , (       )  (       )-        

Using (***), we get !n)]a...,,a(F:)x...,,x(F[ n1n1  .  

  Therefore,  

    !n)]a...,,a(F:S][S:)x...,,x(F[ n1n1  . 

   By (*), 

    !n]S:)x...,,x(F[ n1  . 
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  Ttherefore, we get !n]S:)x...,,x(F[ n1   and 1)]a...,,a(F:S[ n1  i.e. )a...,,a(FS n1 , proving 

(i) and (iii). 

  Further, n!= ]S:)x...,,x(F[ n1  o(G( )x...,,x(F n1 ,S)  n! implies that 

     o(G( )x...,,x(F n1 ,S) = n!, proving (i). 

 

4.6.4 Note.(i) By above theorem we come to know that symmetric rational functions in n variables is a 

rational function in the elementary symmetric functions of these variables. More sharply we can 

say that: A symmetric polynomial in n variables is a polynomial in their elementary symmetric 

functions. 

 

4.7 NORMAL EXTENSION. 

4.7.1 Defnition. Normal extension. A finite extension K of field F is called normal extension of F if 

the fixed field under G(K, F) is F itself.  

   

  Example.  In 4.5.6, as discussed in example (iii) and (v), K is a normal extension of F while in 

example (iv), K is not a normal extension of F. 

 

4.7.2 Theorem. Let K be a normal extension of F and let H be a subgroup of       G(K, F); let KH 

={xK | (x)=x   H}be the fixed field under H. Then  

  (i) [K: KH]=o(H) . (ii) H=G(K, KH). 

  Proof. Since H leaves every element of KH fixed, therefore, HG(K, KH). Hence o(G(K, KH))  

o(H).  Moreover [K: KH]  o(G(K, KH)). Hence [K:KH]  o(H). As KH is a subfield of K, we can 

find aK such that K=KH(a); this a must therefore satisfy an irreducible polynomial over KH of 

degree m=[K: KH]  and no nontrivial polynomial of lower degree. Let 1, 2, …, h be the 

distinct elements of H, where 1 is the identity of G(K, F). Then o(H)=h. Consider the following 

functions: 

     



n

1i
i1 )a( , 




ji
ji2 )a()a( , …, 




n

1i
in )a( . 
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  Let H, then h21 ,...,,   are all distinct elements of H. Hence 

},...,,{},...,,{ h21h21  . Now  

    H)a()a())a(()(
n

1i
i

n

1i
i

n

1i
i1  








,   

  α1 remains invariant under every H  and hence belongs to KH. Similarly each αi belongs to 

KH. Consider a polynomial  

   h
h1h

1
h

h21 )1(...xx))a(x))...(a(x))(a(x(   . 

  The roots of this polynomial are )a(...,),a(),a(a h21  . As αi KH, 

h
h1h

1
h )1(...xx    is a polynomial over KH with a as its root. Since the degree of 

minimal polynomial of a is m, therefore, h  m. Hence [K:KH]  o(H). Now by above discussion, 

[K:KH] = o(H). Further   o(H)= [K:KH]  o(G(K, KH))  o(H) implies that  o(H)=o(G(K, KH)). 

Hence H=G(K, KH). 

 

4.7.3 Note. Let K be a normal extension of F, then KG(K, F)=F and  [K: KG(K, F)]         = o(G(K, F). 

 

4.7.4 Theorem. Let K be finite extension of field F, characteristic F is zero. Then K is a normal 

extension of F if and only if K is splitting field of some polynomial over F.  

  Proof. Since characteristic of K is zero; K is simple extension of F. Hence K=F(a) for some a 

K. Let 1, 2, …, n are distinct elements of G(K, F) where 1 is the identity of G(K, F). 

Consider the following functions: 

     



n

1i
i1 )a( , 




ji
ji2 )a()a( , …, 




n

1i
in )a( .  

  Then it is easy to see that 1 , 2 , …, n  are elementary symmetric functions 

  in 1(a),  2(a) …,n(a)(show that 1 , 2 , …, n  are elementary symmetric functions in 1(a),  

2(a) …,n(a)) 

    Let us suppose that K is normal extension of field F. Then by definition of normal 

extension, F is fixed field of G(K, F). Consider the polynomial  
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   n
n1n

1
n

n21 )1(...xx))a(x))...(a(x))(a(x(   . 

  The roots of this polynomial are )a(...,),a(),a(a n21  . Since each αi is  left fixed by each 

G(K, F) and hence belongs to fixed field F of G(K, F). Therefore, 

]x[F)1(...xx n
n1n

1
n   . Since a K and  i is an automorphism on K,  i(a) also 

belongs to K.  As K is smallest field containing all the roots of the polynomial 

]x[F)1(...xx n
n1n

1
n   ,   K is splitting field of n

n1n
1

n )1(...xx     over F. 

Hence K is splitting field of some polynomial over F. 

    Conversely, suppose that K is splitting field of polynomial f(x) over F. We want to 

show that K is normal extension of F. We proceed by applying induction on [K: F]=n. If n=1, 

then K=F. Since fixed field of G(K, F) is contained in K=F and contains F, therefore, fixed field 

of G(K, F) is F itself and the result is true in this case. Assume that result is true for any pair of 

fields K1 and F1 of degree less then n that when ever K1 is splitting field of some polynomial over 

F1, then K1 is normal extension of F1 also. 

    If f(x) F[x] split into linear factors over F, then K=F, which is certainly a normal 

extension of F. So, assume that f(x) has an irreducible factor p(x) F[x] of degree r >1. Since 

every irreducible polynomial over the field of characteristic zero has no multiple roots, let 

r21 ...,,,   are distinct roots of p(x) all lies in K. Consider the field F(α1). Since F  F(α1), 

therefore,  f(x)F(α1)[x]. But then K is splitting field of f(x) over F(α1) also. Since 

[K:F]=[K:F(α1)][F(α1):F] and [F(α1):F]=r>1, we have [K:F(α1)]<[K:F]. Hence by induction 

hypothesis K is normal extension of F(α1) and Hence fixed field of G(K, F(α1))=F(α1).  

    Let K be arbitrary element which is left fixed by every G(K, F). We will 

show that F. Let 1G(K, F(α1)), then 1 leaves every element of , F(α1) fixed and hence also 

leaves every element of F fixed, therefore, 1G(K, F). Then by assumption 1() =  for every 

1G(K, F(α1) and hence belong to the fixed field  F(α1) of G(K, F(α1). Since every element of 

F(α1) is of the form 

     F...,,;... 01r0
2r

12r
1r

11r  





  , 

   we have  
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    0
2r

12r
1r

11r ...  



 .  

  Since we always have an automorphism iK such that iG(K, F) and i(α1)= αi . Further by 

our choice   )(i , and F)(i    we have  

    0
2r

1i2r
1r

1i1ri ...)()()(  



 . 

  Equivalently, r...,,2,1i;0... 0
2r

i2r
1r

i1r  



 .  

  Thus the polynomial 

     



 0

2r
2r

1r
1r ...xx   

  of degree at most        has 1 , 2 , …, r  as   distinct root. This is possible only when all 

the coefficients of the polynomial are zero; in particular 0  =0. Hence F0 and hence 

F is the fixed field of G(K, F) i.e. K is normal extension of F. 

 

4.7.5 Corollary. If K is an extension of field F(characteristic F=0) such that           [K: F]=2, then K is 

normal extension of F.  

  Proof. Since characteristic of F is zero, therefore, K=F(a) for some aK. It is given that [K:F]=2, 

therefore, a satisfies an irreducible polynomial of degree two. Let f(x)=x
2
+bx+c be its minimal 

polynomial of a over F. One of the root of f(x) is a and v be another root of f(x). But then  v + a = 

-b  v = -b - a which lies in K. Hence all the root of f(x) lies in K. Since K is smallest extension 

which contains all the root of f(x), K becomes splitting field of the polynomial f(x). Hence by 

Theorem 4.7.4, K is a normal extension of F 

 

  Example. Show by an example that normal extension of normal extension of a field need not be 

a normal extension of that field. In other words if L is normal extension of K and K is normal 

extension of F, then L may not be a normal extension of F. 

  Solution. Let F=Q(field of rational numbers), K= )2(Q  and L= )2(Q 4

1

. Since 2  satisfies an 

irreducible polynomial x
2
-2 over F, [K: F]=2. Then by Corollary 4.7.5, K is normal extension of 

F.  
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    As )2(Q24

1

 and satisfies the polynomial 2x2   over )2(Q , therefore, [

)2(Q 4

1

: )2(Q ]=2. Again by Corollary 4.7.5, L is normal extension of K. 

    Since 4

1

2  satisfies the polynomial x
4
-2 over F which is irreducible over Q. Its 

roots are 4

1

2 , - 4

1

2 , i 4

1

2  and -i 4

1

2 . Since the imaginary root of polynomial x
4
-2 does not lies in 

L= )2(Q 4

1

, L is not splitting field of x
4
-2 over Q. Hence L is not a normal extension of F. 

 

4.8  CHECK YOUR PROGRESS  

Q (i) What can be the degree of irreducible polynomial over an algebraically closed field. 

Q (ii) Discuss the results of Theorem 4.2.3 by some examples 

Q (iii) Is       irreducible over a field of characteristic 3. Also discuss its irreducibility over 

the field of rational numbers. 

Q (iv) Write an example of separable polynomial over the field of rational numbers. 

4.9 SUMMARY 

In this chapter, we study algebraically closed fields, rational symmetric functions, normal 

extensions and fixed fields. 

 

4.10 KEY WORDS 

 Normal, Separable, splitting field, rational, Algebraically closed, Symmetric. 

 

4.11 SELF-ASSESSMENT TEST 

  (1) Prove that every automorphism on K must leave rational number fixed. 

  (2)  If K is an extension of field F, char F=p0 and aK is separable over F, then F(a) is 

separable extension of F. 

  (3) Prove that for given fields FLK, if K is separable over F, then it is separable over L also. 
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4.12 ANSWERS TO CHECK YOUR PROGRESS 

Answer to Q (i) By Theorem 4.2.2, its degree can be zero or one.  

Answer to Q (iii) By Corollary 4.3.4, it is reducible over field of characteristic 3 while, it is 

irreducible over the field of rational numbers 

Answer to Q (iv)        is separable over Q (the field of rational numbers). Infact every 

irreducible polynomial is separable over Q. 
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Lesson: Galois Theory and Finite Fields 

 

Structure: 
5.0 Learning Objectives 

      5.1 Introduction 

5.2 Perfect field 

5.3 Galois theory 

5.4 Solvable by redicals 

5.5 Cyclotomic polynomials 

5.6 Finite fields 

5.7 Check Your Progress 

5.8 Summary 

5.9 Keywords 

5.10 Self-Assessment Test 

5.11 Answers to check your progress 

5.12 References/ Suggested Readings 

 

5.0 LEARNING OBJECTIVE. Objective of this chapter is to study the Fundamental 

Theory of Galois. With the help of splitting field K of polynomial f(x) over the field F, Galois 

Group G(K,F) of the polynomial f(x) is obtained in order to see that the  general polynomial of 

degree n>4 is not solvable by radicals.  

 

5.1 Introduction. In this chapter, we study about perfect fields in the Section 5.2. In next section, we 

study about Galois group of a polynomial and Galois Theory. In Section 5.4, by the use of Galois 

Theory, we see that general polynomial of degree n > 4 is not solvable by radicals. As there are 

polynomials (for example  x
2
+1,  x

2
+x+1 having primitive second root of unity and  primitive 
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third root of unity) whose all roots are primitive n
th

 roots of unity called as n
th 

cyclotomic 

polynomials, are studied in Section 5.5. In last section we study about finite fields and show that 

for given prime p and positive integer n, there always exist a finite field of order p
n
. 

 

5.2 PERFECT FIELD. 

5.2.1 Definition. A field F is called perfect if all finite extensions of F are separable. 

5.2.2 Theorem. Prove that any field of characteristic 0 is perfect. 

  Proof. Let F be a field with 0 characteristic. Let K be finite extension of F. Then K is algebraic 

extension of F also. Therefore, every element k of K satisfies some irreducible polynomial over 

F. Since characteristic of F is 0, therefore, every irreducible polynomial is separable over F. 

Hence every element k of K is separable over F. i.e. K is separable extension of F. Therefore, 

every finite extension K of F is separable over F. i.e. F is perfect field. 

 

5.2.3 Theorem. Prove that a field F of characteristic p (0) is perfect if and only for every  a F , we 

can find   b in F such that b
p
=a. 

  Proof. Proof follows from Theorem 4.4.5. 

 

5.3 GALOIS THEORY.  

 

5.3.1 Definition. Galois Group. Let K be the splitting field of some polynomial f(x) over F. The 

Galois Group of f(x) is the group of all automorphisms of K leaving every element of F fixed. 

              

5.3.2 Lemma. If K is a normal extension of field F(characteristic of F =0) and T is a subfield of K 

containing F, then T is normal extension of F if and only if (T)T for all  G(K, F). 

 Proof. Since K is normal extension of F, therefore, K is a finite extension of F. Hence T is also a 

finite extension of F. Since the characteristic of T is zero, therefore, T=F(a) for some a in T. 

Suppose that T is normal extension of F. Then to prove that (T)  T for all  G(K, F).  
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Since T is normal extension of F, therefore, G(T, F) is a finite subgroup of G(K, 

F). Let 1, 2,…,m  be the m distinct elements of G(T, F) where 1 is identity element. Since 

1(a),…,m (a)  are the elements of T, consider the polynomial p(x)= (x-1(a))…(x-m (a))= 

m
mmm xx   )1(...1

1  where α1, α2,…, αm are elementary symmetric function in 1(a),…,m 

(a). Further each αi is invariant under elements of G(T, F). Since T is normal extension of F, 

therefore, each αi belongs to F. Hence p(x) is a polynomial over F with a as its root lying in K. 

Now for   G(K, F),  (a) is also a root of p(x). But all the roots of p(x) lies in T, therefore, 

(a)T. Since T=F(a) and [T: F]=o(G(T, F))=m, the arbitrary element t of T is of the form 

F...,,;...aat m21m
2m

2
1m

1   . 

Then for G(K, F), 

)...aa()t( m
2m

2
1m

1                 

       )(...)a()()a()( m
2m

2
1m

1    

        = m
2m

2
1m

1 ...)a()a(   . 

By above discussion, )F,K(GT)t(  . Hence )F,K(GT)T(  .    

Now suppose that )F,K(GT)T(  , we will show that T is normal 

extension of F. Since K is normal extension of F, therefore, G(K, F) is finite. Let 1, 2,…,n  be 

the n distinct elements of G(K, F) where 1 is identity element. Since T=F(a) for some a in T  and 

)F,K(GT)T(  , we get that 1(a),…,n (a)  are the elements of T. Consider the 

polynomial f(x)= (x-1(a))…(x-n (a))= n
mnn xx   )1(...1

1  where α1, α2,…, αn are 

elementary symmetric function in 1(a),…,n (a). Further each αi is invariant under elements of 

G(K, F). Since K is normal extension of F, therefore, each  αi belongs to F. Hence f(x) is a 

polynomial over F with a as its root lying in T. Since a is a root of f(x) and T=F(a) is the smallest 

field containing all the roots of f(x), T becomes splitting field of polynomial f(x)F[x]. Hence T 

is normal extension of F.  
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5.3.3 Theorem. Show that Galois group of a polynomial over a field is isomorphic to a subgroup of 

group of permutation of its root.  

 Proof. Let f(x) be a polynomial over the field F. Let K be the splitting field of f(x) over F. Then 

K is normal extension of F. Therefore, the Galois group G(K, F) of f(x) is of finite order [K:F]= 

n, say. Let 1, 2,…,n  be the n distinct elements of G(K, F). Let S={α1, α2,…, αm} be the set of  

m distinct roots of f(x) in K and P be the set of all those permutations on S which changes only 

those elements of  S which are not in F i.e. P is the set of all those permutations on S which 

leaves every element of F fixed. If 1 and 2 are two elements of P then the composite mapping 

12 also fixes every element of F. But then 12P. Equivalently, we have shown that P is a 

subgroup of group of all permutations on S.  

   Let G(K, F). Take 
*
 as the restriction of  to S. If α is a root of f(x) in K, then 

(α) = *(α) is also a root of f(x) in K. Since S is the set of all the root of f(x), therefore, *(α) 

S. Hence * is a function from S to S. Being a restriction of , * is a one-one and onto mapping 

which leaves every element of F fixed. Hence  *P. 

  Define a mapping  from G(K, F) to P by  

   () = 
*
   G(K, F) 

  is one-one. Let 1 and 2 belongs to G(K, F).  If  (1)=  (2), then 1*=2* . But then 

1*(α)=2*( α) for all  αS. Equivalently, 1(α)=2(α) for all αS. Since K=F(α1, α2,…, αm), 

therefore, every element of K can be obtained from F and α1, α2,…, αm. Hence if K, then 

1()=2() for all K. Hence  1 = 2. Therefore, mapping   is one-one.  

  is onto. Let g be any element of P. Then g is a permutation on S leaving those elements of 

elements of S fixed which are in F. Obtain an extension mapping g
*
 of g. i.e. a mapping such that 

g
*
(α)=g(α) for all α belonging to S and which leaves every element of F fixed. Clearly such a 

mapping g
*
 is obtainable in G(K, F) because K=F(α1, α2,…, αm). Hence mapping   is onto also.  
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  is homomorphism. Let 1 and 2 belongs to G(K, F). Then (12) = (12)*, the restriction 

of 12 on S. But then  

(12)*()= 12() =1(2())= 1(2*())= 1*2*()  S.  

Hence (12)*= 1*2* and hence (12)=(12)*= 1*2*=(1)(2), proving that  is an 

isomorphism from G(K, F) to P.   

 

5.3.4 Theorem. Let f(x) be a polynomial in F[x], K its splitting field over F and G(K,F) its Galois 

group. For any subfield T of K which contain F, let G(K,T) ={ G(K, F)| (t)=t for every tT} 

and for any subgroup H of G(K, F) let KH ={xK| (x)=x for every T}. Then association of T 

with G(K, T) sets up a one-one correspondence of the set of subfield of K containing F onto the 

set of subgroup of G(K, F) such that  

 (i) T=KG(K, T) 

 (ii) H=G(K, KH) 

 (iii) [K:T]=o(G(K, T)), [T:F]= index of G(K, T) in G(K, F) 

 (iv) T is normal extension of F if and only if G(K, T) is a normal subgroup of G(K, F). 

 (v) When T is normal extension of F, then G(T, F) is isomorphic to G(K, F)/ G(K, T). 

  Proof. (i) By Theorem 4.7.2, if K is a normal extension of F, H is a subgroup of G(K, F) and KH 

is the fixed field under H. Then [K: KH] =o(H) and  H=G(K, KH). It is given that K is the splitting 

field of polynomial f(x) over F. Since FT, therefore, f(x)T[x]. But then K is splitting field of 

f(x) over T. Hence K is normal extension of T also. Therefore KG(K,T)=T. 

  (ii) Again by Theorem 4.7.2, H=G(K, KH). (write prove the theorem 4.7.2). By this theorem we 

get that any subgroup of G(K, F) is of the form G(K,T) corresponding to the subfield T of K 

containing F. Define a mapping from the set of all subfields  of K containing F and the set of all 

subgroup of G(K,F) by setting  (T)=G(K,T). This is an onto mapping as for given subgroup 

G(K,T) we have T as its fixed field.  This is one-one mapping as if (T1)= (T2), then G(K,T1)= 

G(K,T2). But then ),(),( 21 TKGTKG KK  . Since T1 and T2 are subfield of K containing F, by (i) T1 



ALGEBRA  MAL-511 

DDE, GJUS&T, Hisar  98 |  

 

=T2. Hence there is one to one correspondence between the set of all subfields of K containing F 

and the set of all subgroup of G(K,F).  

  (iii) Since K is normal extension of T, therefore, by Theorem 4.8.2, [K:T]       =o(G(K,T)). 

Further K is normal extension of F, therefore, [K: F]= oG(K,F). As K is finite extension of T and 

T is finite extension of F, therefore, [K:F]=[K:T][T:F]. Equivalently o(G(K,F))=[K:T] o(G(K,T)) 

i.e. [K:T]= o(G(K,F))/ o(G(K,T))= index of G(K,T) in G(K, F). 

  (iv) By Theorem 5.3.2, T is normal extension of F if and only if  

    (T)T   for all G(K, F). 

  As K is normal extension of T, therefore, fixed field of G(K,T) is T itself. Therefore, T is normal 

extension of F  

             if and only if ((t))= (t) for all tT, G(K, F) and  G(K,T) 

   if and only if 
-1
(t)=(t) for all tT, G(K, F) and  G(K,T). 

  But then by definition of G(K,T), 
-1
G(K,T) for all G(K, F) and  G(K,T). Hence T is 

normal extension of F 

   if and only if 
-1
G(K,T) for all G(K, F) and  G(K,T) 

    if and only if G(K,T) is normal subgroup of G(K, F). 

  Hence T is normal extension of F if and only if G(K,T) is normal subgroup of G(K, F). 

  (v) It is given that T is normal extension of F. But By 5.3.2, T is normal extension of F if and 

only if (T))T for all  G(K, F). Let 
*
 be the restriction of  on T i.e. 

*
(t) = (t) for every 

tT. Since  leaves every element of F fixed, therefore, 
*
 also leaves every element of F fixed 

and hence 
*
G(T, F). Define a mapping   : G(K, F) G(T, F) by  ( )=

*
. The mapping is 

well defined as if  1=2, 1(k)=2(k) for every kK. But then  1(t)=2(t) for every t T. 

Equivalently, )t()t( *
2

*
1  . Hence  *

2
*
1   and hence (1)= (2) i.e. mapping is well 

defined.  

   Since (12)
*
(t)=(12)(t)=1(2(t))= ))t(( *

21  = ))t(( *
2

*
1  = )t(*

2
*
1    tT,  therefore,  

(12)
*
= *

2
*
1 . Then (12)=(12)

*
= *

2
*
1 = (1)(2) i.e.  is an homomorphism of  

G(K,F) into G(T,F). By fundamental theorem on homomorphism, ))F,K(G(
Ker

)F,K(G



. Now 
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we evaluate Ker . Let  Ker , then  ()=I, where I is the identity of G(T,F). Then 
*
=I i.e. 


*
(t)=t for every t in T. Since 

*
(t)= (t)=t, therefore, G(K, T) and vice versa. Hence 

))F,K(G(
)T,K(G

)F,K(G
 . Further o(

)T,K(G

)F,K(G
)=  

))T,K(G(o

))F,K(G(o
= [T:F] (by (iii)). Since [T: F]=o(G(T: 

F). Therefore, image of G(K, F) in G(T, F) is all of G(T, F).  Hence )F,T(G
)T,K(G

)F,K(G
 . It 

completes the proof of theorem. 

5.4 SOLVABILITY BY RADICALS. 

   Consider general quadratic polynomial x
2
+a1x+a2 over the field F. This polynomial then 

can be taken over the field F(a1, a2), extension of F obtained by adjoining a1 and a2 to F. Let α 

and  are its roots, then 2
2
11 a4aa   and 2

2
11 a4aa  . We see that there is a 

formula, which expresses the roots of p(x) in terms of a1 and a2 and square roots of rational 

functions of these. 

   Consider general qubic polynomial t(x)=x
2
+a1x

2
+a2x+a3.  Then by Cardan’s  formula  if 

we let   

   
3

a
ap

2
1

2  ,  3
21

3
1 a

3

aa

27

a2
q  , 3

23

4

q

27

p

2

q
P   and Q= 3

23

4

q

27

p

2

q


(with cube roots chosen properly) then  the roots of equation x
2
+a1x

2
+a2x+a3 are 

3

a
QP 1 , 

3

a
QP 12  ,  

3

a
QP 12  ;  (1) is cube root of unity. We see that there is a formula, 

which expresses the roots of p(x) in terms of a1 and a2 and square roots of rational functions of 

these.  Similarly we obtain the roots of q(x) in terms of a1, a2 , a3 ,  by taking relations between 

square roots and cube root of rational function in a1, a2 and a3. Now the over all observation is 
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that we can obtain an extension of  F(a1,a2 , a3)  by adjoining square root and then a cube root to 

F(a1,a2 , a3) , which contains all the roots of q(x). Similar formula can be obtained for bi-quadratic 

equations.  Can we obtain such an formula for fifth degree equations. ? The answer is no. In 

mathematical terms we say that every polynomial of degree less then or equal to four is solvable 

by radical while general polynomial of degree more than four is not solvable by radicals. 

5.4.1 Definition. For given field F, polynomial p(x) in F[x] is solvable by radicals over F if we can 

find a sequence of fields F1=F(1), F2=F1(2), …, Fk=Fk-1(k) =F(1, 2,…, k) such that F1r
1 

, 1
2r

2 F ,…, 1k
kr

k F   such that the roots of p(x) all lies in Fk.  

5.4.2 Remark. If K is the splitting field of p(x) over F, then p(x) is solvable by radical over F if we can 

find a sequence of fields FF1=F(1) F2=F1(2)  …Fk=Fk-1(k) such that F1r
1  , 1

2r
2 F

,…, 1k
kr

k F   such that the roots of p(x) all lies in Fk and Fk K.  

5.4.3 Theorem. If the field F contains all the n
th

 roots of unity, a is nonzero element of F, and K is the 

splitting field of the polynomial x
n
-a over F, then  

  (i) K=F(u); u is the root of x
n
-a 

  (ii) The Galois group of x
n
-a over F is abelian. 

  Proof. Take n

i2

e



 . Then α is n
th

 root of unity such that α
m

 1 for 0<m<n. We call α as 

primitive n
th

 root of unity. Trivially 1, α, α
2
, …, α

n-1
 all are root  n

th
 roots of unity. All these are 

distinct as if α
i
 = α

j
 , 0i<jn-1, then α

i-j
 =1, a contradiction that α

m
 1 for 0<m<n.  
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    If u is root of x
n
-a in K, then u, u , 

2
u ,…, 

1n
u


  are distinct roots of x

n
-a. By our 

assumption  lies in F, therefore, all the roots of  x
n
-a lies in F(u) and F(u) is smallest such field. 

Hence the splitting field of x
n
-a is F(u) and thus K=F(u). 

    If 1, 2 are two elements in the Galois group G(K=F(u), F) of x
n
-a i.e. 1 ,  2 

leaves every element of F fixed. But then 1(u) and 2(u) are also roots of x
n
-a . Since  u, u , 

2
u

,…, 
1n

u


  are only distinct roots x
n
-a, therefore, 1(u)= 

i
u  and 2(u)=

j
u  for some positive 

integers i and j. Then 12(u)= 1 (2(u))= 1 (
j

u )=1 (u) 1 (
j

 )=
ji

u


 .  Similarly 21(u)= 

jiij
uu


 .  Therefore, 12 and 21 agree on u and F, hence on all of K=F(u). But then  12 

= 21, whence the Galois group is abelian. 

 

5.4.4 Corollary. If F has all n
th

 root of unity, then adjoining one root of x
n
-a to F, where a belong to F, 

is a normal extension. 

  Proof. It is clear from Lemma that K=F(u), u is root of x
n
-a, is splitting field of x

n
 -a over F. 

Hence K is normal extension of F. 

 

5.4.5 Theorem. If F is a field which contains all n
th

 root of unity for every positive integer n and if 

p(x)F[x] is solvable by radicals over F, then the Galois group over F of p(x) is a solvable group. 

  Proof. Let K be the splitting field of p(x) over F and G(K,F) is Galois group of p(x) over F. Since 

p(x) is solvable by radicals, there exist a sequence of fields 

   FF1=F(1) F2=F1(2)  …Fk=Fk-1(k),  
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  such that F1r
1  , 1

2r
2 F ,…, 1k

kr
k F   and where KFk. As we pointed out without loss of 

generality we may assume that Fk. Since FFi for all 1 i  k, therefore, p(x) also belongs to 

Fi[x]. Hence Fk is the splitting field of p(x) over Fi. Hence Fk is normal extension of Fi also.  

   By assumption F contains all the n
th 

root of unity for all positive integer n, therefore, each 

Fi-1 also contains all the n
th 

root of unity. In particular, Fi-1 also contains all the ri
th 

root of unity. If 

we take a polynomial ii r
i

rx  Fi-1[x], then by Theorem 5.4.3, Fi=Fi-1(i) is normal extension of   

Fi-1. Since Fk  is also normal over Fi-1, therefore, by Theorem 5.3.4, G(Fk, Fi) is normal subgroup 

of G(Fk, Fi-1). Consider the chain 

   G(Fk, F)  G(Fk, F1)  G(Fk, F2) … G(Fk, Fk-1) {e} (*) 

  Since for each i, 1 i  k , G(Fk, Fi-1) is normal in  G(Fk, Fi), G(Fk, F1) is normal in G(Fk, F) and 

Fi is normal extension of Fi-1, by Fundamental Theorem of Galois theory, 

)F,F(G

)F,F(G
)F,F(G

ik

1ik
1ii


  . Since by Theorem 5.5.3, )F,F(G 1ii   is abelian, therefore, 

)F,F(G

)F,F(G

ik

1ik 

is abelian. Thus each quotient group 
)F,F(G

)F,F(G

ik

1ik   of the chain (*) is abelian. Thus )F,F(G k  is 

solvable. Since KFk and is a normal extension of F. Again by Theorem 5.3.4, )K,F(G k  is a 

normal subgroup of )F,F(G k and 
)K,F(G

)F,F(G
)F,K(G

k

k . Thus G(K, F) is homomorphic image of  

G(Fk, F), a solvable group. But we know that homomorphic image of a solvable group is also 

solvable. Hence G(K, F) is solvable. Since G(K, F) is Galois group of p(x) over F the theorem 

has been proved. 

 



ALGEBRA  MAL-511 

DDE, GJUS&T, Hisar  103 |  

 

5.4.6 Remark. (i) Converse part of Theorem 5.4.5 is also true; i.e. if Galois group of p(x) over F is 

solvable then p(x) is solvable by radicals over F. 

  (ii) Theorem 5.4.5 and its converse part is also true even when F does not contain the roots of 

unity. 

5.4.7 Theorem. The general polynomial of degree n  5 is not solvable by radicals.  

  Proof. Take F(a1, a2, …, an), the field of symmetric rational functions in the n variables a1, a2, …, 

an. If x1, x2,…, xn are n variable such that   

          



n

1i
i1 xa , 




ji
ji2 xxa , k

kji
ji3 xxxa 


 ,…, 




n

1i
in xa . 

 Then x1, x2,…, xn are the root of the polynomial  

      t
n 

+ a1t
n-1 

+…+ an. 

  But then F(x1, x2, …, xn) is the splitting field of above polynomial. Since (Theorem 4.6.3) Galois 

group G(F(x1, x2, …, xn), F(a1, a2, …, an))=Sn, (symmetric group of degree n on {1, 2, …, n}). 

Then, by Theorem 5.5.5, t
n
+a1t

n-1
+…+ an is solvable by radicals over F(a1, a2, …, an) if and only 

if Sn is solvable. As we know that Sn is not solvable for n  5. Hence the general polynomial of 

degree n  5 is not solvable by radicals. 

 

5.5 CYCLOTOMIC POLYNOMIALS. 

   Let C be the field of complex numbers. Consider the complex number αn= 

n

2i

e
n

2
sini

n

2
cos









 . Then α
n
=1 and α

m
1 for 1 m < n. We call α as a primitive n

th
 root of 

unity. Clearly α satisfies the polynomial x
n
-1 over field of rational numbers. Now the question is 

that what is minimal polynomial of  α  

 

5.5.1 Definition. Cyclotomic polynomial. Polynomial  n(x) defined as: 

  (a)  1(x)=x-1 
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  (b) if n>1, n(x)=   




)x(

)1x(

d

n


, where d runs over all the divisors of n except for n itself. These 

polynomials are called cyclotomic polynomials. n(x) is called n
th

 cyclotomic polynomial.  

  Example. (i) 2(x)= 1x
)1x(

)1x(

)x(

)1x( 2

1

2










 

  (ii)  3(x)= 1xx
)1x(

)1x(

)x(

)1x( 2
3

1

3










 

  (iii) 4(x)= 1x
)1x)(1x(

)1x(

)x()x(

)1x( 2
4

21

4










 

  (v)  5(x)= 1xxxx
)1x(

)1x(

)x(

)1x( 234
5

1

5










 

  (vi) 6(x)= 1xx
)1xx)(1x)(1x(

)1x(

)x()x()x(

)1x( 2
2

6

321

6










 

        

)1xx(

)1x(

)1xx)(1x(

)1x(

)1)x(

)1x(

)1x(

)1xx)(1x(

)1x(

)x()x(

)1x(
)x()vii(

36

3

363

3

33

3

9

2

9

31

9

9





























. 

 

5.5.2 Observations made about the Cyclotomic polynomials from above discussion. 

  (i) These are monic polynomials with integer coefficients. 

  (ii) Degree of n(x) is (n), where  is Euler’s phi-function.   

  (iii) αn is a root of n(x) and n(x) is minimal polynomial of αn. 

  (iv) n(x) is irreducible polynomial over field of rational numbers. 

 

5.5.3 Notation. When n=p
m

, denote )x()x( )m(
pn   . 

5.5.4 Lemma. For all m 1, 
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1m1m1m

1m

m

p)1p(p2p

p

p
)m( x...xx1

1x

1x
)x(









  

  Proof. We will prove the result by induction on m. 

  If m=1, then )x()x( p
)1(   . Since 1 is the only divisor of p which is less than p, therefore, 

)1p(2
p

1

p

p x...xx1
1x

1x

)x(

1x
)x( 










 . Hence the result is true for m=1. 

  Let us suppose that result holds for all k < m. i.e.  

   
1k1k1k

1k

k

p)1p(p2p

p

p
)k( x...xx1

1x

1x
)x(









 . 

  Consider )x()m( . Since )x()x( mp
)m(    and only divisors of p

m
 are 1, p,…,p

m-1
 which are 

less than p
m

, therefore,  

   
)x()...x()1x(

1x

)x()...x()x(

1x
)x(

)1m()1(

p

pp1

p

p

m

1m

m

m 







 
 . 

  Since by induction hypothesis,  

  1x
1x

1x
...

1x

1x

1x

1x
)1x()x()...x()1x(

1m

2m

1m2

p

p

p

p

pp
)1m()1( 




















 , therefore,  

         

1x

1x
)x(

1m

m

p

p
)m(







 = 

1m1m1m p)1p(p2p x...xx1
  .  

  It proves the result. 

 

5.5.5 Theorem. For any prime p and non-negative integer m, the polynomial )x()m(  is irreducible in 

Q[x]. 

  Proof. Clearly )x()m( is a monic polynomial of degree (p
m

)= (p-1)p
m-1 

with integer 

coefficients. Further  
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   )x(
1x

1)x(

1x

1x
)x(

1m

1m

1m

1m

m

p)1(

p

pp

p

p
)m( 
















    (1) 

  Let f(x) and g(x) are two polynomials with integer coefficients, define f(x)g(x) mod p if  

f(x)=g(x) + pr(x), where r(x) is polynomial with integer coefficients.  

    Now (f(x)+g(x))
p
= p

1p

1i

iip
C

p )x(g))x(g)x(fp()x(f
i

 




 . Since
iCp 0 mod p, therefore, 

(f(x)+g(x))
p
 f(x)

p
 +g(x)

p 
mod p. Further, for every positive integer a, by Fermat Theorem, a

p
  a 

mod p. Hence if 



n

0i

i
ixa)x(f , then pmod)x(f)x(ax)a()x(f pn

0i

ip
i

n

0i

pip
i

p  





.  

     Proceeding in the same way we get pmod)x(f)x(f
kk pp  for all non-negative integers 

k. 

     By (1), )x()x(
1mp)1()m( 

 , therefore,  

   
1m1m1m p

p
p

p
p)1( )

x

)1)1x(
()

)11x(

)1)1x(
()1x(

 





  

      =
1mp

p2

)
x

1x...x
2

)1p(p
px1

(





 

     pmodx
1mp)1p(   pmod)1x()m(  . 

  Hence )x(prx)1x(
1mp)1p()m( 
 , r(x) is the polynomial with integer coefficients. As by 

Lemma 5.5.4, 

    
1m1m1m p)1p(p2p)m( )1x(...)1x()1x(1)1x(
  , 

  Therefore, p)10()m(  . i.e. constant term of )1x()m(  is p. 

  Now we have a prime p such that p divides every coefficient of )1x()m(  except the leading 

coefficient and p
2
 does not divides the constant coefficients of )1x()m(  . Hence by Eisenstein 

Criteria of irreducibility )1x()m(  is irreducible over Q. 
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5.5.6 Theorem. For every integer n1, )x)...(x)(x()x( ))n(()2()1(
n

  , where 

))n(()2()1( ,...,,   are the (n) distinct primitive nth root of unity. 

  Proof. We will prove the result by induction on n.  

  If n=1, then )1x()x(1  . Since 1 is the only first root of unity, therefore, result is true in this 

case.  

   Suppose that the result is true for all m < n. Therefore, if d | n, d < n, we have 

)x)...(x)(x()x( ))d((
d

)2(
d

)1(
dd

   where 
)i(

d  are primitive d
th

 root of unity. Now,  

   )x)...(x)(x(1x n21
n   ; 1 , 2 ,…, n  are all nth roots of unity. If we separate 

all primitive n th roots of unity, we get 

    )x(v)x)...(x)(x(1x ))n(()2()1(n    

  Where v(x) is the product of all other )x( i . Thus by our induction hypothesis v(x) is the 

product of the d(x) over all the divisors d of n, dn. i.e. i.e. 





nd
nd

d xxv
/

)()( . Then  

   
)x(v

)x(v)x)...(x)(x(

)x(

1x
)x(

))d((
d

)2(
d

)1(
d

nd
n/d

d

n

n













  

    = )x)...(x)(x( ))d((
d

)2(
d

)1(
d

  . It proves the theorem. 

 

5.5.7 Theorem. For every positive integer n, the polynomial n(x) is a monic polynomial with integer 

coefficients of degree (n),  is the Euler’s - function. 

  Proof. Since )x)...(x)(x()x( ))n(()2()1(
n

  , therefore, its degree is (n). We now 

apply induction on n to show that it is a polynomial with integer coefficient.  

  If n=1, then )1x()x(1  i.e. for n=1, )x(1 is a polynomial with integer coefficient. 
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   Suppose that result is true for all m < n. i.e. )x(m  is the polynomial with integer 

coefficient.  

   Since 









nd
n/d

d

n

n
)x(

1x
)x( . By induction assumption, 





nd
n/d

d )x( is a monic polynomial with 

integer coefficient. If we divide the polynomial x
n
-1 by 





nd
n/d

d )x( , then it is a monic polynomial 

with integer coefficients. Hence )x(n is a monic polynomial with integer coefficients. 

 

5.5.8 Theorem. For every positive integer n the polynomial )x(n is irreducible over the field of 

rational numbers. 

  Proof. Let f(x) be an irreducible factor of the polynomial )x(n in Q[x]. We will show that f(x)=

)x(n . Let if possible )x(n f(x), then )x(n =f(x)g(x) for polynomial g(x). Since )x(n has no 

multiple roots and is monic polynomial, therefore, gcd(f(x), g(x))=1.  

   Let p be a prime number such that p does not divide n. If  is a root of f(x) then  is also 

root of )x(n , therefore,  is primitive nth root of unity. By our choice on p, 
p
 is also primitive 

n th root of unity. Now we will show that 
p
  is a root of f(x). Let if possible 

p 
is not a root of 

f(x). Then it will be root of g(x). But then  is root of g(
p
). Since f(x) is irreducible polynomial, 

therefore, it is minimal polynomial of . Hence f(x)| g(
p
). But g(x

p
)g(x)

p
 mod p, then f(x)| 

g()
p
.  

   Let t(x)=a0+a1x+a2x
2
+…+anx

n
 be a polynomial in Z[x]. Identify t(x) in Zp[x] by 

n
n

2
310 xa...xaxaa)x(t  , where ia is residue of ai (mod p). Then it is homomorphism 

from Z[x] onto Zp[x]. 

    Since all the polynomials )x(n , v(x), f(x) and g(x) lies in Z[x], Let  )x(n , )x(v

, )x(f and  )x(g  are their respective images in Zp[x]. If t(x)=a0+a1x+a2x
2
+…+anx

n
  and r(x)= 



ALGEBRA  MAL-511 

DDE, GJUS&T, Hisar  109 |  

 

b0+b1x+b2x
2
+…+bmx

m 
 are two polynomials then t(x)r(x)= 





nm

0i

i
ixc , where 




ikj
kji bac . 

Since  jjj apda   and kkk bpeb  , therefore, 

    kjjkkj
2

kjkj bap)dbea(pedba  .  

  But then  kjkj baba  . Hence we can identity t(x)r(x) by )x(r)x(t  in Zp[x].  

  Hence )x(v)x()1x( n
n  ,  )x(g)x(f)x(n   and p)x(g|)x(f .  

   Therefore, )x(f  and )x(g  have common root in some extension of Zp. Now 

)x(v)x()1x( n
n  =  )x(v)x(g)x(f , hence  a, as a root of both )x(f  and )x(g , is a multiple 

root of x
n
-1. Since derivative (x

n
-1)

’
 of 

 
x

n
-1 is   nx

n-1
-1 0, since p does divides n; therefore,  (x

n
-

1)
’ 
 is relatively prime to p. Hence (x

n
-1) can not have a multiple root. With this contradiction, we 

say that whenever  is a root of f(x) , then so must 
p
 be one for any prime p that does not divide 

n.  

   Repeating this argument, we arrive at: 
r
 is a root of f(x) for every r that does not divide 

n. But  as a root of f(x), is also a root of )x(n  and hence is a primitive n
th

 root of unity. Thus 
r
 

is also a primitive nth root of unity for every r relatively prime to n. By running r over all the 

number which are less than n and relatively co-prime to n, we get every primitive root of unity is 

also a root of (x). Hence )x(n =f(x), therefore, )x(n is irreducible over Q. It proves the 

theorem. 

 

5.6 FINITE FIELDS. 

5.6.1 Definition. Field F is called finite field if it has finite number of elements. For example, set {0, 1, 

2, …, p-1} is a field under addition and multiplication modulo p. It has exactly p elements. 

 

5.6.2 Lemma. If F is a finite of order q, then an extension K of F; [K:F]=n, has q
n
 elements. 
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  Proof. Since extension K of F is a vector space with dimension n over F. Let v1, v2, …, vn be a 

basis of K over F. Then elements of K are of the form α1v1+ α1v1+ α2v2+…+ αnvn ; αi F. Since 

each αi has q choice, therefore, number of elements in K are q
n
. 

 

5.6.3 Corollary. If F is a finite field, then F has p
m

 elements where p is the characteristic of F. 

  Proof. If F is prime field with characteristic p then it has exactly p elements. F is not a prime 

field, then F has a prime subfield P having exactly p elements. Since F is an extension of P, 

therefore, by Lemma 5.6.2, F has p
m

 elements. 

 

5.6.4 Corollary. If the finite field has p
m

 elements then every aF satisfies aa
mp  .  

  Proof. If a=0, then the above result is trivial. If a0, then the set of all onzero elements form 

group under multiplication. Hence 1a 1pm

 . Equivalently aa
mp  . 

 

5.6.5 Lemma. If the field F has p
m

 elements then the polynomial xx
mp   in F[x] factors in F[x] as 





F

p )x(xx
m

. 

  Proof. Since the characteristic of field F with p
m

 elements is p, therefore, derivative )x(f ' of 

f(x)= xx
mp  is 011xp 1pm m


. Hence all the roots of f(x) are distinct. Further, by 

corollary 5.4.4, each element of F is a root of f(x). Hence 



F

p )x(xx
m

. 

 

5.6.6 Corollary. If the field has p
m

 elements, then F is the splitting field of polynomial xx
mp  . 

  Proof. Result follows by Lemma 5.6.5 and using the fact that no field smaller than F can contain 

all the roots of f(x).  

 

5.6.7 Lemma. Any two finite fields having same number of elements of elements are isomorphic. 
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  Proof. Let the two finite fields F and K have p
m

 elements. Then By Corollary 5.4.6, these two 

fields are splitting of the polynomial xx
mp  . We know that any two splitting field of the same 

polynomial are isomorphic (can be easily proved), therefore, F and K are isomorphic. 

 

5.6.8 Lemma. For every prime p and every positive integer m there always exist a field of order p
m 

elements. 

  Proof. Consider the polynomial xx
mp   in Zp[x]; Zp is field of integers under addition and 

multiplication modulo p. Let K be the splitting field of  xx
mp  . In K let F={aK| aa

mp  }. 

Clearly elements of F are the roots of the polynomial xx
mp  . Since all the roots of xx

mp   

are distinct, therefore, F has p
m

 elements. Further for a and b belonging to F we have  aa
mp    

and bb
mp  . Then 

mmm ppp ba)ab(  =ab, therefore, abF. Since the characteristic is p, 

therefore, baba)ba(
mmm ppp  . Hence F becomes a subfield of K. Therefore, we 

always have a field of order p
m

. 

 

5.6.9 Theorem. For every prime p and every positive integer m there exist a unique field of order p
m 

elements. 

  Proof. Proof follows by Corollary 5.6.7 and Lemma 5.6.8. 

 

5.6.10 Lemma. If G is a finite abelian group with the property that the relation x
n
=e is satisfied by at 

most n elements of G, for every integer n. Then G is cyclic group. 

  Proof. Since G is finite abelian group of order n= r21
r21 p...pp 

; pi’s are distinct primes, we can 

write G= 
r21 ppp S...SS  as the direct product of Sylow pi subgroup of G i.e. every element gG 

can be written in a unique way as g=s1s2… sr, ipi Ss  . If each  
ipS  is a cyclic subgroup of G 

generated by ai then a=a1a2…ar. Let a
m

=e. Then ea...aa m
r

m
2

m
1  . Now using the fact that   each 

element of G has unique representation, in particular e has unique representation. Hence eam
i   
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for 1 i  r. But then  i
ip


divides m. Since pi are distinct primes, therefore, r21
r21 p...pp 

= o(G) 

divides m. Hence o(G)= m.  

    Therefore, G will be cyclic if each 
ipS is cyclic. i.e. in order to show that G is 

cyclic it is sufficient to show that each p group is cyclic, p is prime. Let H be a group of some 

prime power. Let a is an element of H whose order is as large as possible. Definitely its order is 

p
r
 for some positive integer r. More over if a

i
=a

j
 for i > j , 1pj,i0 r  , then a

i-j
=e. Since the 

order of a is p
r
 > i-j, a

i-j
=e only when i=j. Hence all the elements 

1p2 r

a...,,a,a,e 
are distinct. 

Further all these elements are the solutions of the equation ex
rp  , As by our hypothesis 

ex
rp   has at most p

r
 distinct solution, therefore, 

1p2 r

a...,,a,a,e 
are the only solutions of 

ex
rp  . Now if bH, its order is  p

s
 where s  r and e)b(b

srsr ppp 


. Then, by the 

discussion made above, 
iab   for some  . So every element of H is some power of a, therefore, 

H is cyclic. Hence G is cyclic. 

 

5.6.11 Theorem. Let K be a field and G be a finite subgroup of the multiplicative group of non-zero 

elements of K. Then G is cyclic. 

  Proof. Since K is a field and the multiplicative group of K is abelian. Further for any integer n, 

equation x
n
-1 has at most n root in K and so at the most n roots in G. The hypothesis of Lemma 

5.6.10 is satisfied. Hence G is cyclic. 

 

5.7 CHECK YOUR PROGRESS 

Q(i) Discuss and read about automorphism on a field. 

Q (ii) Discuss the Theorem 5.3.3 by an example. 

Q (iii) Find a field which contains all the nth root of unity, where    . 

Q (iv) Write the elements of finite field of order 9 
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5.8       SUMMARY 

            In this chapter, perfect fields, Galois Theory, solvability by radicals, Cyclotomic polynomials and 

finite fields are studied. 

 

5.9  KEYWORDS 

 Galois group, radicals, perfect field, finite fields 

 

5.10 SELF-ASSESSMENT TEST 

          (1) Prove that )x(n is the minimal polynomial in Q[x] for the primitive n
th

 root of unity; Q is the 

field of rational numbers. 

  (2) Show that the multiplicative group of  non-zero elements of a finite field is cyclic. 

  (3) Find the Galois group of the following polynomials: 

       x
2
+1, x

3
-2 and x

4
-2. 

 

5.11  ANSWERS TO CHECK YOUR PROGRESS 

Answer to Q(iii)  (     ), where   is the field of rational numbers,   is a primitive cube root of 

unity,   is a primitive forth root of unity and   is a primitive 5
th

 root of unity. 
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